Experimental Characterization of a Low-Current Cutting Torch.

Abstract

An experimental characterization of a low-current (30-40 A) cutting torch is presented. To avoid contamination of the plasma arc by removed anode material, a rotating steel cylinder was used as the anode and the arc was anchored onto the cylinder lateral surface. The cathode-anode and cathode-nozzle voltage drops, together with the gas pressure in the plenum chamber were registered for different values of the mass flow rate injected into the plenum chamber. By employing an optical system with a large magnification (≈ 15 X), the arc radius at the nozzle exit was also determined with a digital optical camera. The obtained experimental quantities were used to evaluate several flow properties at the nozzle exit (hot arc plasma and cold gas temperatures, arc and gas velocities, etc.) by employing a simplified theoretical model for the plasma flow in the nozzle. The obtained results are in reasonable agreement with the data reported in the literature by other authors. Explanations of the origin of the clogging effect and the nozzle voltage are also presented.

Description

Keywords

Cutting Torch., Low-Current., Plasma.

Citation

Brazilian Journal of Physics.

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as openAccess