A Simple Model for Sharing Knowledge Among Heterogeneous Sensor Data

dc.creatorMonte, Gustavo Eduardo
dc.creatorMarasco, Damian
dc.creatorAgnello, Ariel Edgardo
dc.creatorBufanio, Rubèn
dc.creatorScarone, Norberto
dc.creatorLiscovsky, Pablo
dc.date.accessioned2023-12-05T18:42:44Z
dc.date.available2023-12-05T18:42:44Z
dc.date.issued2022-10-20
dc.description.abstractThis work presents a simple model that expose the information embedded into a sensor signal allowing to share it independently of the signal nature. Today's highly interconnected world requires a representation of sensor signals that let efficient sharing of embedded information. The proposed model is a state matrix that combine two important aspects of any signal: Its value inside a range and its behavior over the time. From this state matrix is possible to obtain a self-learning model observing the state transition probabilities and the time lapse in each state to deduce signal normality- abnormality that allows to infer a better perception of reality.es_ES
dc.description.affiliationFil: Monte, Gustavo Eduardo. Universidad Tecnológica Nacional. Facultad Regional del Neuquèn; Argentina.es_ES
dc.description.affiliationFil: Marasco, Damian. Universidad Tecnológica Nacional. Facultad Regional del Neuquèn; Argentina.es_ES
dc.description.affiliationFil: Agnello, Ariel Edgardo. Universidad Tecnológica Nacional. Facultad Regional del Neuquèn; Argentina.es_ES
dc.description.affiliationFil: Agnello, Ariel Edgardo. Universidad Tecnológica Nacional. Facultad Regional del Neuquén; Argentinaes_ES
dc.description.affiliationFil: Bufanio, Rubén. Universidad Tecnológica Nacional. Facultad Regional del Neuquén; Argentinaes_ES
dc.description.affiliationFil: Scarone, Norberto .Universidad Tecnológica Nacional. Facultad Regional del Neuquén; Argentina.es_ES
dc.description.affiliationFil: Liscovsky, Pablo. Universidad Tecnológica Nacional. Facultad Regional del Neuquén; Argentina.es_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.formatpdfes_ES
dc.identifier.isbn978-1-6654-8025-3
dc.identifier.urihttp://hdl.handle.net/20.500.12272/9062
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.useCreative Commoses_ES
dc.subjectEdge processing, self-learning, data fusion, sensor signal representation, Smart Cities.es_ES
dc.titleA Simple Model for Sharing Knowledge Among Heterogeneous Sensor Dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versionacceptedVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
self_learningMCTV11.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: