Browsing by Author "Juárez, Juliana María"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item Drug delivery system: large pore SBA-15 as host for ketorolac tromethamine(2022) Juárez, Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the LP-SBA-15 nanomaterial as a promising new host for drug delivery systems because of its high biocompatibility, in vivo biodegradability, and low toxicity. Ketorolac-LP-SBA-15 was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The host shows ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, being the Ritger-Peppas model followed by the Weibull model the best ones. In this work, we show a promising drug storage material for effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. Studies indicate that KETO was adsorbed on the channel surface of LP-SBA-15 without affecting the structure or chemical composition of KETO. Controlled drug delivery systems can achieve precise delivery at the time and place of destination, keeping the concentration of the drug at points in the body within the optimal range and below the toxicity threshold. The study also demonstrates the storage capacity and release properties of LPSBA-15 containing KETO. The release of KETO contained in LP-SBA-15 can offer a significant improvement in the controlled release of the drug and the analgesic and anti-inflammatory effects, positively influenced, by the links formed between the host and drug molecules and by diffusion through the host porosity. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.Item Drug release system: Chlorambucil loaded in mesoporous cellular foam (MCF)(2022) Juárez, Juliana María; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoNanotransporters have received a great deal of research attention because of their promising opportunities in drug delivery [1-5]. Attempting to minimize the secondary adverse events of anticancer drugs and enhance the therapeutic rate, various nanotransporters have been devised, including dendrimers [6, 7], liposomes [8, 9], inorganic nanoparticles, and polymeric nanoparticles [10-13]. Chlorambucil (CLB), is a substance classified as a human carcinogen [14], it is used as a chemotherapy drug administered for treating some types of cancer. It is mainly used to treat chronic lymphocytic leukemia, low-grade nonHodgkin's lymphoma, Hodgkin's lymphoma and ovarian cancer. Chemically, it is 4-[4-bis(2-chloroethyl) amino phenyl butyric acid. MCFs (mesostructured siliceous cellular foams), that can be derived after the inclusion of a bulking medium in the synthesis procedure of SBA-15 [4], are composed of spherically uniform cells 15-50 nm diameter [15], exhibit high surface areas and porosities, and have adjustable pore size distributions [15, 16]. The open large pore system gives MCF unique advantages as catalyst support and separation media for processes involving large molecules. In addition to their specific physicochemical properties, they possess high biocompatibility and low adverse effects, which with their biodegradability, making them attractive for controlled drug release applications.Item H2 storage using Zr-CMK-3 developed by a new synthesis method(2021) Juárez, Juliana María; Venosta, Lisandro F.; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoOne of the biggest problems in using hydrogen as an alternative fuel is that its storage must be safe and portable. This work addresses a new direct synthesis technique used to obtain a novel mesoporous carbon (CMK-3) modified with zirconium oxide. This novel material shows promise for hydrogen adsorption and storage application for energy harvesting. Zirconium oxide (Zr-CMK-3) material is achieved through successful synthesis and characterized by XRD, SEM, Raman, BET, UV-Vis-DRS, XPS and TEM analyses. Zr-CMK-3 signifi- cantly improved H2 storage performance (reaching at 77 K and 10 bar 4.6 wt%) compared to the pristine CMK-3. The novel material is favorable for H2 uptake by using weak bonding (physisorption). A hydrogen uptake mechanistic approach is proposed and the role of the Zr+4 cation in hydrogen adsorption is discussed.Item Influence of ti incorporation to bimetallic mesoporous carbon in the production of 2,5‑dimethylfuran from biomass derivatives(2021) Ledesma, Brenda Cecilia; Juárez, Juliana María; Domine, Marcelo E.; Beltramone, Andrea RaquelMonometallic and bimetallic supported catalysts were developed to produce 2,5-dimethylfuran (DMF) trough hydrogenolysis of 5-(hydroxymethyl)furfural (HMF). Detailed physicochemical characterization was done to understand structure–activity correlation. Through a series of experiments and comparatives tests, the synergistic effect among Pt, Ir, and Ti incorporated in the support was investigated. Results revealed that using the titanium contained ordered mesoporous carbon, synthesized by a novel technique, high selectivity to DMF was achieved. In the case of the best catalyst PtIr-TiC, the good activity and excellent selectivity to the desired product DMF (98% yield) was related to the high hydrogenating capacity of the bimetal- lic sites, the acid support characteristics and the high metal nanoparticles dispersion achieved on the mesoporous titanium modified carbon support.Item Iron-modified mesoporous materials as catalysts for ODS of sulfur compounds(2020) Rivoira, Lorena Paola; Juárez, Juliana María; Martínez, María Laura; Beltramone, Andrea RaquelFe-modified mesoporous catalysts were used in the ODS of DBTs using H2O2 as oXidant and acetonitrile as solvent. SBA-15, MCM-48, CMK-3 and CMK-1 were used as supports. Iron was incorporated using iron nitrate by wetness impregnation. The catalysts were characterized by XRD, N2 isotherms, TEM, XPS and ICP. We developed catalysts with high specific surface area, pore volume and narrow mesopore size distribution and highly dis- persed Fe- species. The catalysts were tested in the o Xidative desulfurization of different sulfur compounds as benzothiophene, dibenzothiopene and 4,6-dimethyl dibenzothiopene. The catalyst prepared using CMK-3 as support was the most active for the ODS reaction. The good activity was related with the high dispersion of the iron oXides, mainly in the magnetite phase. Temperature, hydrogen peroXide and sulfur initial concentration were studied using Fe-CMK-3 in the oXidation of DBT. The optimal operation conditions were determined. Fe- CMK-3 is an active and stable catalyst to be applied in the industrial process of ODS.Item LP-SBA-15/ketorolac nanocomposite: development, characterization, and mathematical modeling of controlled keto release(2022) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoDrug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.Item Mesoporous cellular foam (MCF): an efficient and biocompatible nanomaterial for the controlled release of chlorambucil(2022) Juárez, Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoNanotransporters have entered a great deal of exploration attention because of their promising openings in medicine delivery. We propose in this work, the Mesostructured siliceous cellular (MCFs) nanomaterial as a promising new host for drug delivery systems because both their specific physicochemical properties, in addition to the high biocompatibility, biodegradability, and low toxicity, make them seductive for controlled medicine release operations. Chlorambucil, is used as a chemotherapy drug administered for treating some types of cancer, chronic lymphocytic leukemia, low-grade non- Hodgkin’s lymphoma, Hodgkin’s lymphoma and ovarian cancer. Chlorambucil-loaded Mesostructured cellular foam (MCF-CLB) was prepared and characterized by XRD, TEM, UV- Vis DRS, FTIR, and texture analysis determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The release of the drug was conducted by simulating the physiological conditions to reproduce the conditions of the organism. The mechanism of drug release from the MCF-CLB host was evaluated. Different mathematical models were used to adjust the experimental data, the best model describing the phenomenon under study over the entire period is the Weibull model. The auspicious results we attained for the release of the drug using the new material. The main advantage of this release is that the rate of release is fast at the beginning and then gradually decreases until 24 h practically all the drug contained in the carrier is released (> 95%).Item Nanoscopic hydrogen reservoir orange peel biowaste(2022) Juárez, Juliana María; Ledesma, Brenda Cecilia; Anunziata, Oscar A.; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelThis work addresses the bio-waste valorization approach for the development of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. In this research, activated carbons were synthesized orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the acid concentration, the substrate / activating agent ratio, and the contact time between them. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, a phosphoric acid concentration of 50% by weight and a BET area of ??1402 m2 / g. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 oC and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).Item Nanostructured ketorolac-tromethamine/MCF: synthesis, characterization and application in drug release system(Current Nanoscience, 2018) Juárez, Juliana María; Cussa, Jorgeliba; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoControlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured cellular foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity.Item Nanostructured SBA-15 host applied in ketorolac tromethamine release system(Springer Science+Business Media, 2017) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfrecoThe ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption andrelease. The SBA 15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as a template and TEOS as a silica source. Ketorolac tromethamine was adsorbed into SBA 15 silica nanochan- nels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/ SBA-15 were characterized by X-ray diffraction, thermo gravimetric analysis, transmission electron microscopy, fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1 N) at initial time (0–2 h) and buffer pH 7 at high times at 37 °C under continuous stirring. Oral commercial Keto tablets (Dolten® ) and Keto solution (Keto power) were study for the contrast. Release studies were performed in order to evaluate the required therapeutic efficacy. SBA 15 provides significant improvement in the controlled release of ketor- olac tromethamine.Item Orange peel biowaste used as a nanoscopic hydrogen reservoir(2022) Juárez, Juliana María; Ledesma, Brenda; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelThis work addresses the bio-waste vaporization approach for the development of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. In this research, activated carbons were synthesized from orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the acid concentration, the substrate / activating agent ratio, and the contact time between them. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, a phosphoric acid concentration of 50% by weight and a BET area of 1402 m2 / g. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 oC and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).Item Short time synthesis of titania modified-CMK-3 carbon mesostructure as support for Ir-catalyst applied in catalytic hydrotreating(2020) Ledesma, Brenda Cecilia; Juárez, Juliana María; Beltramone, Andrea RaquelTi-CMK-3 carbon mesoporous was prepared using a novel synthesis method. This new method avoids the hard template synthesis used commonly. The method developed here, allows to reduce time, energy consumptionand cost. Structural and textural characterization of the titanium modified-mesoporous carbonwas performed by N2 adsorption, XRD, UV–vis-DRS, Raman spectroscopy and TEM. The characterization results indicated that the textural and structural properties of the material synthesized by the short time method are comparable with the properties of the material prepared by the hard template method. Ti modi fied-mesoporous carbon was used as support of the iridium nanoparticles, in order to prepare a catalyst to be tested in model hydrotreating reactions. The catalyst obtained by wet impregnation with iridium acetylacetonate were characterized by ICP -AES, H2 chemisorption, TEM, XPS and FTIR of adsorbed pyridine. The high Ir dispersion and small particle size, along with the moderate Lewis acidity generated by the presence of titanium in the support, were responsible for the good performance and stability of the catalyst in the hydrogenation of tetralin in presence of nitrogen com - pounds. Main advantage of the present study is the reduction of time and cost in the synthesis of the new material and the applicability for HDT reactions.Item Síntesis directa de CMK-3 modificada con Ti, como soporte de Ir aplicado a reacciones de hidrodenitrogenacion.(Univesidsad Tecnológica Nacional., 2018) Ledesma, Brenda Cecilia; Juárez, Juliana María; Beltramone , Andrea Raquel; Juárez, Juliana MaríaEn el presente trabajo se sintetizó Ti-CMK-3 mediante un nuevo método de síntesis, en el cual se evita la utilización de un molde, con el fin de reducir el tiempo, el consumo de energía y por ende el costo. La caracterización estructural y superficial del catalizador se realizó mediante adsorción de N2, XRD, UV-Vis DRS, espectroscopía Raman y TEM. Los resultados de la caracterización indicaron que las propiedades texturales y estructurales del material sintetizado son comparables con las propiedades del material preparado por el método tradicional. El catalizador Ir-Ti-CMK-3 obtenido fue activo y selectivo para la reacción de hidrodenitrogenación (HDN) del indol. La principal ventaja del presente estudio es la reducción de tiempo y costo de la síntesis, simultáneamente con la aplicabilidad en las reacciones de Hidrotratamiento (HDT)Item Sistema de liberación controlada de fármacos: espuma mesoporosa MCFClorambucilo(2022) Juárez, Juliana María; Cussa, Jorgelina; Gómez Costa, Marcos Bruno; Anunziata, Oscar A.;La espuma celular mesoestructurada (MCF) es un material prometedor para los sistemas de administración de fármacos dado a la alta biocompatibilidad, biodegradabilidad y baja toxicidad. Sus propiedades incluyen una gran área superficial, poro grande uniforme. En este trabajo, la espuma mesoporosa MCF fue sintetizada con éxito para su aplicación en nanotransportadores de fármacos, específicamente de Clorambucilo, obteniendo el composite MCFCBL. La síntesis del material mesoporoso y el proceso de incorporación de Clorambucilo en los poros de la MCF fueron exitosos tal como se muestra en los análisis de XRD, FTIR, TEM y análisis de propiedades texturales. La liberación del fármaco se realizó simulando las condiciones fisiológicas para reproducir las condiciones del organismo. Se evaluó el mecanismo de liberación del fármaco en el hospedaje MCFCLB. Se utilizaron diferentes modelos matemáticos para ajustar los datos experimentales, el mejor modelo que describe el fenómeno en estudio durante todo el período es el modelo de Weibull. Los resultados auspiciosos que obtuvimos para la liberación del fármaco utilizando el nuevo material, la principal ventaja de esta liberación es que la velocidad de liberación es rápida al inicio y luego disminuye gradualmente hasta que se liberan 24 h prácticamente todo el fármaco contenido en el portador. (> 95%).Item Sustainable utilization of orange peels waste for preparation of activated carbon: synthesis, characterization and hydrogen storage application(2022) Juárez, Juliana María; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno; Beltramone, Andrea Raquel; Ledesma, Brenda CeciliaThe recovery and reuse of orange peel waste (OP) is a sustainable strategy in a circular economy. In this research, OP was used as the raw material for the preparation of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. Activated carbons were synthesized from orange peel using different synthesis conditions. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the the activating agent/precursor ratio, and the contact time between them. The activating agent used is a solution of phosphoric acid (50 wt %) in different weight ratios of acid/precursor of 3:1 or 6:1, with resting time of 24 hours. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, 6:1 precursor/acid ratio and 24 hours of resting time. According XRD analysis all samples present amorphous structure of activated carbons with BET surface areas of 1000 to 1400 m2/g. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196oC and 10 bar). The synthesized material shows promise in adsorbing hydrogen by weak binding forces (physisorption).Item Sustainable utilization of orange peels waste for preparation of activated carbon: Synthesis, Characterization and Hydrogen storage application(2022) Juárez, Juliana María; Ledesma, Brenda Cecilia; Beltramone, Andrea Raquel; Gómez Costa, Marcos Bruno; Anunziata, Oscar AlfredoThe recovery and reuse of orange peel waste (OP) is a sustainable strategy in a circular economy. In this research, OP was used as the raw material for the preparation of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. Activated carbons were synthesized from orange peel using different synthesis conditions. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the the activating agent/precursor ratio, and the contact time between them. The activating agent used is a solution of phosphoric acid (50 wt %) in different weight ratios of acid/precursor of 3:1 or 6:1, with resting time of 24 hours. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, 6:1 precursor/acid ratio and 24 hours of resting time. According XRD analysis all samples present amorphous structure of activated carbons with BET surface areas of 1000 to 1400 m2 /g. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 oC and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption)Item Synthesis and characteristics of CMK-3 modified with magnetite nanoparticles for application in hydrogen storage(2022) Juárez, Juliana María; Cussa, Jogelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos BrunoIn this work, we report the synthesis and characterization of iron oxide nanoparticles supported in nanostructured carbon (CMK-3). This material is promising in the application of hydrogen adsorption for energy storage. The material with iron oxide nano- particles (Fe-CMK-3) was successfully synthesized and characterized by X-ray diffraction, textural properties analysis, transmission and scanning electron microsco- py, X-ray photoelectron spectroscopy, and magnetiza- tion studies. A large amount of the iron incorporated as iron oxide nanoparticles was in the magnetite phase. The incorporation of magnetite on the CMK-3 carbon surface significantly improved the storage capacity of hydrogen (4.45 wt% at 77 K and 10 bar) compared with the CMK-3 framework alone (2.20 wt% at 77 K and 10 bar). The synthesized material is promising for hy- drogen adsorption by weak bond forces (physisorption). A hydrogen adsorption mechanism was proposed in which the nanoparticles of magnetite have an important role.Item Synthesis, characterization and hydrogen storage application of an activated carbon derivated from orange peels waste(2022) Juárez, Juliana María; Ledesma, Brenda Cecilia; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno; Beltramone, Andrea RaquelThe recovery and reuse of orange peel waste (OP) is a sustainable strategy in a circular economy. In this research, OP was used as the raw material for the preparation of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. Activated carbons were synthesized from orange peel using different synthesis conditions. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the the activating agent/precursor ratio, and the contact time between them. The activating agent used is a solution of phosphoric acid (50 wt %) in different weight ratios of acid/precursor of 3:1 or 6:1, with resting time of 24 hours. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470 , 6:1 precursor/acid ratio and 24 hours of resting time. According XRD analysis all samples present amorphous structure of activated carbons with BET surface areas of 1000 to 1400 m /g. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. Said material significantly improved H storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 C and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).