Browsing by Author "Rivoira , Lorena Paola"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Aniline adsorption and polymerization over gallium modified mesoporous material.(Univesidsad Tecnológica Nacional., 2018) Martínez , María Laura; Rivoira , Lorena Paola; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Rivoira , Lorena PaolaIn this work we study aniline polymerization over a mesoporous Ga-SBA-3 synthesized in our laboratory. In order to modify the intrinsic acidity of the mesoporous material gallium was incorporated into the structure by post synthesis wet impregnation method using gallium nitrate. Structural and textural characterization of the materials was performed by X-ray diffraction (XRD), ICP and EDX analysis, N2 adsorption-desorption and BET area analysis, FTIR and scanning electron microscopy (SEM). The catalytic material presented a ratio Si/Ga=32. Aniline is a weak organic base and an amphiprotic compound, so it can accept or donate protons. The polyaniline (PANI) exists in diverse ways presenting different chemical and physical properties. The protonated polyaniline feature the conductivity of a semiconductor material, over 100 S/cm. Toward achieve aniline adsorption, the solid gallium silicate was exposed to aniline vapours. The aniline adsorption was studied by infrared spectroscopy and the results obtained were evaluated so as to been able to polymerize it over the mesoporous material generating a unique polyaniline-host composite with new properties. Those polyaniline/hosts composites obtained by a polymerization in-situ technique were characterized by infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Comparing to previous results FTIR analysis of the polyaniline/Ga SBA-3 composite (PANI/Ga-SBA-3) showed characteristics bands attributed to the quinoidal stretching (N=Q=N) and C-C stretching of the benzene ring. The low angle XRD analysis showed that the mesoporous structure was maintained in spite of the gallium incorporation. The absence of PANI peaks and G2O3 in the wide angle XRD pattern confirms that the polyaniline is adsorbed over the gallium silicate mesoporous surface and the gallium is well dispersed over the support.Item Experimental desing optimization of the ODS of DBT using V2O5 supported on GA-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone, Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box– Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.Item Experimental Desing Optimization of the ODS of DBT using V2O5 supported on Ga-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the catalyst/substrate ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with Ga/Si and V/Si ratios of v1/15 and 1/25, respectively. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support.Item Experimental desing optimization of the ods of DBT using V2O5 supported on GA-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box– Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.Item Hydrodeoxygenation of guayacol over platinum modified mesoporous catalysts.(Univesidsad Tecnológica Nacional., 2018) Rivoira , Lorena Paola; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María LauraBiomass pyrolysis results in fuel bio-oil which can be consider as a renewable petroleum alternative. Bio-oil obtained by this process presents high oxygen content, becoming into a corrosive and unstable fuel. Hydrodeoxygenation (HDO) is a catalytic treatment that improves the bio-oil characteristics. There are more than 400 organic compounds that can be found in bio oil. For that reason we selected guayacol (2-methoxyphenol ó 4-hydroxy-3-methoxybenzyl) as model compound to test the catalytic activity of the developed catalysts. The catalysts tested for hydrodeoxygenation (HDO) of guayacol to produce deoxygenated products such as benzene, toluene, ciclohexene and ciclohexane were platinum modified mesoporous SBA-15 and Ga-SBA 15. The synthetized catalysts were obtained by sol-gel method. Active platinum sites were incorporated by wet impregnation. The system reaction used for HDO is a 600 mL stirred autoclave (Parr Pressure Reactor 4536). Reaction conditions were carried out at 230°C and 12 atm of H2 under 500 rpm. Reactor feed consisted in 50 mL of a 1% w/v solution of guayacol in dodecane. Then, 200 mg of the catalyst was transferred to the reactor. Samples were taken every hour. Products were analysed with HP Series II GC and HP-5 capillary column and identified by GC/MS. Better catalytic results were obtained when Ga was introduced as heteroatom into the SBA-15 siliceous framework. Textural and structural properties of the Pt -supported mesoporous catalysts were determined along with the nature of the active site. The synthetized material were characterized before and after the incorporation of metal active site by XRD, HRTEM, SEM EDX, FTIR, XPS and N2 adsorption-desorption isotherms. Characterization results demonstrated that highly dispersed Pt species are responsible for the high activity in the guayacol conversion. The most active catalyst for HDO of guayacol was Pt/Ga-SBA-15 achieving 99 % of guayacol conversion in a relatively short time (4 h). Gallium atoms incorporated into the support modified the nature of the SBA-15 surface by conferring Bronsted and Lewis acidity. The acid sites are able to interact with the platinum active sites improving the activity of the catalyst. As consequence the gallium modified catalyst showed better dispersion of the Pt sitesItem Novel and simple one-pot method for the synthesis of titanium modified-CMK-3 applied in desulfurization of refractory oeganosulfur compounds.(Univesidsad Tecnológica Nacional., 2018) Rivoira , Lorena Paola; Ledesma , Brenda Cecilia; Juárez , Juliana María; Beltramone, Andrea Rauqel; Juárez , Juliana María; Ledesma , Brenda CeciliaTi-CMK-3 carbon mesoporous was prepared using a novel synthesis method. This new method avoids the hard template synthesis used commonly. The method developed here, allows reducing time, energy consumption and cost. Our primary aim in this work is to evaluate the ODS activity of the Ti-modified mesoporous carbon CMK-3, synthesized by the short time method, in order to achieve total removal of sulfur compounds from diesel fuel. The catalytic oxidation of the sulfur compound with hydrogen peroxide was carried out in a glass batch reactor, equipped with a magnetic stirrer, a thermometer and a condenser. In a typical run, the solid catalyst (60 mg) was suspended under stirring (750 rpm) in 20 mL of a solution of 500 ppm of S as DBT (or other) in acetonitrile. Then, appropriate amount of 30% aqueous H2O2 was added at constant temperature. The experiments were performed in a three-phase liquid-liquid-solid (L (oil) –L (solvent) –S (catalyst)) system, acetonitrile was used as solvent and dodecane as oil phase. Solution samples were recovered at various times. The products were analyzed by GC HP 5890 Series II with a HP-5 column and connected to FID and PFPD detectors, after filtration and eventually decantation step. The products were confirmed using a Shimadzu GCMS. Structural and textural characterization of the titanium modified-mesoporous carbon was performed by N2 adsorption, XRD, UV-Vis-DRS, XPS, Raman spectroscopy and TEM. The characterization results indicated that the textural and structural properties of the material synthesized by the short time method are comparable with the properties of the material prepared by the hard template method. Ti modified-mesoporous carbon was synthesized by different methods in order to prepare catalysts to be tested in the oxidative desulfurization (ODS) of sulfur compounds. The good performance and stability of the catalyst prepared using a novel synthesis method was attributed to well dispersed anatase nanospecies over the high area mesoporous carbon. Main advantage of the present study is the reduction of time and cost in the synthesis of the new material and the applicability for ODS reactions.Item RSM in the analysis of conversion of DBT in oxidative desulfurization using vanadium-SBA-15 catalysts modified with AI and Ga.(Univesidsad Tecnológica Nacional., 2018) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone, Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio. Conversion at 15 min is the analyzed response. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; optimal ratio between g DBT/g of catalyst was 4 and molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.Item Sulfur elimination by ODSwith titanium-modified SBA-16.(Univesidsad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura; Ledesma, Brenda; Vallés , Verónica AlejandraNanostructured carbon CMK-3 and mesoporous silica SBA-15 modified with Fe by using different sources of Fe, were used in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) as a model sulfur compound. Fe-CMK-3 and Fe-SBA-15 were prepared by wetness impregnation using FeCl3.6H2O and FeNO3.9H2O as different sources of Fe. A solution of FeCl3.6H2O/ FeNO3.9H2O in ethanol was mixed with the corresponding material solution (CMK-3 or SBA-15) at room temperature. The solution was placed in a rotary evaporator to remove excess of ethanol at about 333 K and 60 rpm. Afterwards, the sample was dried at 373 K for 18 h and was thermally treated in a dynamic inert (N2) atmosphere. The percentage of Fe has been 2 wt.% with respect to carbon in the final FeCl3-CMK-3 and FeNO3-CMK-3 material. Four samples modified with Fe have been prepared and were characterized by XRD, FTIR, XPS, BET, TEM and SEM. These studies indicated that it was possible to obtain a CMK-3 replica successfully from SBA-15, using sucrose as a carbon precursor. Wide angle XRD pattern of the sample modified with FeCl3.6H2O implies the formation of the magnetite phase in the silica channels. The nanomaterial area is significantly smaller with the incorporation of the metal, SBA-15 and CMK-3`s characteristic structure is maintained after the metal is within the host, in agreement with the XRD studies. The catalytic activity was improved when the nanoporous materials were modified with Fe. The nanoporous carbon modified with FeCl3.6H2O was the most active catalyst for ODS of DBT, using hydrogen peroxide (H2O2) as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions.Item Synthesis and characterization of a nanoporous carbon CMK-3 modified with iron for the ODS of DBT.(Univesidsad Tecnológica Nacional., 2017) Juárez , Juliana María; Rivoira , Lorena Paola; Gómez Costa, Marcos Bruno; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Rivoira , Lorena PaolaA nanostructured Carbon CMK-3 modified with Fe by using different sources of Fe, were used in the oxidative desulfurization (ODS) of dibenzothiophene as a model sulfur compound. Ordered mesoporous carbon CMK-3 was synthesized via a two-step impregnation of the SBA-15 silica mesonanopores with a solution of sucrose using an incipient wetness method. The sucrose–silica composite was heated at 1173 K for 4 h under nitrogen flow. The silica template was dissolved in 5 wt.% hydrofluoric acid in order to remove the silica. The template-free carbon product thus obtained was filtered, washed with deionized water and ethanol and dried. Fe-CMK-3 was prepared by wetness impregnation using FeCl3.6H2O and FeNO3.9H2O as different sources of Fe. A solution of FeCl3.6H2O/ FeNO3.9H2O in ethanol was mixed with the carbon solution at room temperature. The solution was placed in a rotary evaporator to remove excess of ethanol at about 333 K and 60 rpm. Afterwards, the sample was dried at 373 K for 18 h and was thermally treated in a dynamic inert (N2) atmosphere. The percentage of Fe has been 2 wt.% with respect to carbon in the final FeCl3-CMK-3 and FeNO3-CMK 3 material. Porous carbon CMK-3 and the samples modified with Fe were characterized by XRD, FTIR, XPS, BET, TEM and SEM. These studies indicated that it was possible to obtain a CMK-3 replica successfully from SBA-15, using sucrose as a carbon precursor. Wide angle XRD pattern of the sample modified with FeCl3.6H2O implies the formation of the magnetite phase in the silica channels. The surface areas were 1320 m2/g for the CMK-3 and 1240 m2/g and 609 m2/g for FeCl3- CMK-3 and FeNO3-CMK-3, respectively. While the nanomaterial area is significantly smaller with the incorporation of the metal, CMK-3`s characteristic structure is maintained after the metal is within the host, in agreement with the XRD studies. The catalytic activity was improved when the nanoporous carbon was modified with Fe. The sample modified with FeCl3.6H2O was the most active catalyst for ODS of DBT, using hydrogen peroxide (H2O2) as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions.Item Vanadium oxide supported on mesoporous SBA-15 modified with AI and Ga as catalysts in ODS of DBT.(Univesidsad Tecnológica Nacional., 2017) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María LauraIn order to adapt current processes to the strict regulatory requirements, several technologies have been developed for deep desulfurization of diesel fuel. The major portion of sulfur in light cycle oils (LCO) is found in dibenzothiophene (DBT) and alkyl-dibenzothiophenes, which are not easily removable by hydrotreating, because they require high pressure and hydrogen consumption. Vanadium oxides supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene as a model sulfur compound. The catalytic activity was improved when SBA-15 framework was modified with Al and Ga as heteroatom substituting framework Si. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium VO4-3 species are responsible for the high activity in the sulfur removal. The Ga modified support with an intermediate V/Si ratio of 1/30 was the most active catalyst for ODS of DBT, using hydrogen peroxide as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation into the support modified successfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the active vanadium sites improved the activity of the catalysts. The high dispersion depended on the vanadium loading and on the nature of the support. The more acidic support allowed better dispersion of the vanadium species due to stronger interaction metal-support. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiophene.Item VOx-SBA-15 modified with AI and Ga in ODS of DBT.(Univesidsad Tecnológica Nacional., 2018) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María LauraIn order to adapt current processes to the strict regulatory requirements, several technologies have been developed for deep desulfurization of diesel fuel. The major portion of sulfur compounds in light cycle oils (LCO) are dibenzothiophene (DBT) and alkyl-dibenzothiophenes, which are not easily removable by hydrotreating. Vanadium oxides supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene. The catalytic activity was improved when SBA-15 framework was modified with Al and Ga as heteroatom substituting Si. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium VO4-3 species are responsible for the high activity in the sulfur removal. The Ga modified support with an intermediate V/Si ratio was the most active catalyst, using hydrogen peroxide as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation modified successfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the vanadium active sites improved the activity of the catalysts. The more acidic support allowed better dispersion of the vanadium species due to stronger interaction metal-support. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiophene.