RSM in the analysis of conversion of DBT in oxidative desulfurization using vanadium-SBA-15 catalysts modified with AI and Ga.

Abstract

Experiment design-response surface methodology (RSM) was used to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio. Conversion at 15 min is the analyzed response. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; optimal ratio between g DBT/g of catalyst was 4 and molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.

Description

Keywords

RSM, DBT, SBA-15, AL and Ga

Citation

2nd International Conference on Catalysis and Chemical Engeneering 2018.

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess