Facultad Regional Córdoba

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Vanadium oxide supported on mesoporous SBA-15 modified with AI and Ga as a highly active catalyst in the ODS of DBT.
    (Universidad Tecnológica Nacional., 2017) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura
    Vanadium pentoxide supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene as a model sulfur compound. The catalytic activity was improved when SBA-15 framework was modified with Al and Ga as heteroatom substituting Si. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis– DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depends on the vanadium loading and on the nature of the support. The more acidic support allowed better dispersion of the vanadium species. The Ga modified support with an intermediate V/Si ratio of 1/30 was the most active catalyst for ODS of DBT, using hydrogen peroxide (H2O2) as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation into the support modified successfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the active vanadium sites improved the activity of the catalysts. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiophene.
  • Thumbnail Image
    Item
    EXperimental design optimization of the ODS of DBT using vanadium oXide supported on mesoporous Ga-SBA-15
    (2020) Rivoira, Lorena Paola; Cussa, Jorgelina; Martínez, María Laura; Beltramone, Andrea Raquel
    EXperiment design-response surface methodology is applied in this work to model and optimize the o Xidation of dibenzothiophene (DBT) using VOX-Ga-SBA-15 catalyst. The analyzed variables are the influence of the nature of the catalyst (V and Ga loading), the s ubstrate/catalyst mass ratio (g DBT/g of catalyst) and the o Xidant/substrate molar ratio (H2O2/DBT). The response analyzed is conversion of DBT at 15 min of reaction time. A set of re- sponse surfaces were obtained applying the BoX-Behnken Design. Based on statistical methodology it was pos- sible to find the best arrangement between the amounts of the gallium heteroatom and the vanadium active species. The higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio between H2O2/DBT was 5. Gallium incorporation as heteroatom in tetrahedral position allowed the better anchorage ofthe active species of vanadium, generating a very well dispersed catalyst. The optimized catalyst minimized the mass transfer limitation and moreover, was active after several recycles. The best catalyst was likewise very active for the oXidation of the most refractory sulfur compounds as benzothiophene and 4,6-dimetyldi- benzothiopene.