Facultad Regional Córdoba

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94

Browse

Search Results

Now showing 1 - 10 of 18
  • Thumbnail Image
    Item
    Síntesis directa de CMK-3 modificada con Ti, como soporte de Ir aplicado a reacciones de hidrodenitrogenacion.
    (Univesidsad Tecnológica Nacional., 2018) Ledesma, Brenda Cecilia; Juárez, Juliana María; Beltramone , Andrea Raquel; Juárez, Juliana María
    En el presente trabajo se sintetizó Ti-CMK-3 mediante un nuevo método de síntesis, en el cual se evita la utilización de un molde, con el fin de reducir el tiempo, el consumo de energía y por ende el costo. La caracterización estructural y superficial del catalizador se realizó mediante adsorción de N2, XRD, UV-Vis DRS, espectroscopía Raman y TEM. Los resultados de la caracterización indicaron que las propiedades texturales y estructurales del material sintetizado son comparables con las propiedades del material preparado por el método tradicional. El catalizador Ir-Ti-CMK-3 obtenido fue activo y selectivo para la reacción de hidrodenitrogenación (HDN) del indol. La principal ventaja del presente estudio es la reducción de tiempo y costo de la síntesis, simultáneamente con la aplicabilidad en las reacciones de Hidrotratamiento (HDT)
  • Thumbnail Image
    Item
    Nanostructured SBA-15 host applied in ketorolac tromethamine release system
    (Springer Science+Business Media, 2017) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfreco
    The ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption andrelease. The SBA 15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as a template and TEOS as a silica source. Ketorolac tromethamine was adsorbed into SBA 15 silica nanochan- nels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/ SBA-15 were characterized by X-ray diffraction, thermo gravimetric analysis, transmission electron microscopy, fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1 N) at initial time (0–2 h) and buffer pH 7 at high times at 37 °C under continuous stirring. Oral commercial Keto tablets (Dolten® ) and Keto solution (Keto power) were study for the contrast. Release studies were performed in order to evaluate the required therapeutic efficacy. SBA 15 provides significant improvement in the controlled release of ketor- olac tromethamine.
  • Thumbnail Image
    Item
    Nanostructured ketorolac-tromethamine/MCF: synthesis, characterization and application in drug release system
    (Current Nanoscience, 2018) Juárez, Juliana María; Cussa, Jorgeliba; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo
    Controlled drug delivery systems can maintain the concentration of drugs in the exact sites of the body within the optimum range and below the toxicity threshold, improving therapeutic efficacy and reducing toxicity. Mesostructured cellular foam (MCF) material is a new promising host for drug delivery systems due to high biocompatibility, in vivo biodegradability and low toxicity.
  • Thumbnail Image
    Item
    Synthesis, characterization and hydrogen storage application of an activated carbon derivated from orange peels waste
    (2022) Juárez, Juliana María; Ledesma, Brenda Cecilia; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno; Beltramone, Andrea Raquel
    The recovery and reuse of orange peel waste (OP) is a sustainable strategy in a circular economy. In this research, OP was used as the raw material for the preparation of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. Activated carbons were synthesized from orange peel using different synthesis conditions. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the the activating agent/precursor ratio, and the contact time between them. The activating agent used is a solution of phosphoric acid (50 wt %) in different weight ratios of acid/precursor of 3:1 or 6:1, with resting time of 24 hours. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470 , 6:1 precursor/acid ratio and 24 hours of resting time. According XRD analysis all samples present amorphous structure of activated carbons with BET surface areas of 1000 to 1400 m /g. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. Said material significantly improved H storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 C and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).
  • Thumbnail Image
    Item
    Orange peel biowaste used as a nanoscopic hydrogen reservoir
    (2022) Juárez, Juliana María; Ledesma, Brenda; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno; Beltramone, Andrea Raquel
    This work addresses the bio-waste vaporization approach for the development of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. In this research, activated carbons were synthesized from orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the acid concentration, the substrate / activating agent ratio, and the contact time between them. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, a phosphoric acid concentration of 50% by weight and a BET area of 1402 m2 / g. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 oC and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).
  • Thumbnail Image
    Item
    Drug delivery system: large pore SBA-15 as host for ketorolac tromethamine
    (2022) Juárez, Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno
    Drug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the LP-SBA-15 nanomaterial as a promising new host for drug delivery systems because of its high biocompatibility, in vivo biodegradability, and low toxicity. Ketorolac-LP-SBA-15 was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The host shows ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, being the Ritger-Peppas model followed by the Weibull model the best ones. In this work, we show a promising drug storage material for effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. Studies indicate that KETO was adsorbed on the channel surface of LP-SBA-15 without affecting the structure or chemical composition of KETO. Controlled drug delivery systems can achieve precise delivery at the time and place of destination, keeping the concentration of the drug at points in the body within the optimal range and below the toxicity threshold. The study also demonstrates the storage capacity and release properties of LPSBA-15 containing KETO. The release of KETO contained in LP-SBA-15 can offer a significant improvement in the controlled release of the drug and the analgesic and anti-inflammatory effects, positively influenced, by the links formed between the host and drug molecules and by diffusion through the host porosity. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.
  • Thumbnail Image
    Item
    Nanoscopic hydrogen reservoir orange peel biowaste
    (2022) Juárez, Juliana María; Ledesma, Brenda Cecilia; Anunziata, Oscar A.; Gómez Costa, Marcos Bruno; Beltramone, Andrea Raquel
    This work addresses the bio-waste valorization approach for the development of a novel carbonaceous nanomaterial to be used in the adsorption of hydrogen as an alternative in the use of green hydrogen. In this research, activated carbons were synthesized orange peel using different synthesis conditions. With the activated carbons obtained with the best structure and texture, the adsorption of hydrogen and the effects on their meso / microporosity were studied. The activation of the carbon was carried out by means of a chemical process with phosphoric acid as activating agent, varying the acid concentration, the substrate / activating agent ratio, and the contact time between them. The best support was obtained using a carbonization time of 1 h, a carbonization temperature of 470oC, a phosphoric acid concentration of 50% by weight and a BET area of ??1402 m2 / g. Said material significantly improved H2 storage behaviour compared to CMK-3 type nanostructured carbon (3.1% by weight at -196,15 oC and 10 bar). The synthesized material shows promise in absorbing hydrogen by weak binding forces (physisorption).
  • Thumbnail Image
    Item
    LP-SBA-15/ketorolac nanocomposite: development, characterization, and mathematical modeling of controlled keto release
    (2022) Cussa, Jorgelina; Juárez, Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo
    Drug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.
  • Thumbnail Image
    Item
    H2 storage using Zr-CMK-3 developed by a new synthesis method
    (2021) Juárez, Juliana María; Venosta, Lisandro F.; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno
    One of the biggest problems in using hydrogen as an alternative fuel is that its storage must be safe and portable. This work addresses a new direct synthesis technique used to obtain a novel mesoporous carbon (CMK-3) modified with zirconium oxide. This novel material shows promise for hydrogen adsorption and storage application for energy harvesting. Zirconium oxide (Zr-CMK-3) material is achieved through successful synthesis and characterized by XRD, SEM, Raman, BET, UV-Vis-DRS, XPS and TEM analyses. Zr-CMK-3 signifi- cantly improved H2 storage performance (reaching at 77 K and 10 bar 4.6 wt%) compared to the pristine CMK-3. The novel material is favorable for H2 uptake by using weak bonding (physisorption). A hydrogen uptake mechanistic approach is proposed and the role of the Zr+4 cation in hydrogen adsorption is discussed.
  • Thumbnail Image
    Item
    Mesoporous cellular foam (MCF): an efficient and biocompatible nanomaterial for the controlled release of chlorambucil
    (2022) Juárez, Juliana María; Cussa, Jorgelina; Anunziata, Oscar Alfredo; Gómez Costa, Marcos Bruno
    Nanotransporters have entered a great deal of exploration attention because of their promising openings in medicine delivery. We propose in this work, the Mesostructured siliceous cellular (MCFs) nanomaterial as a promising new host for drug delivery systems because both their specific physicochemical properties, in addition to the high biocompatibility, biodegradability, and low toxicity, make them seductive for controlled medicine release operations. Chlorambucil, is used as a chemotherapy drug administered for treating some types of cancer, chronic lymphocytic leukemia, low-grade non- Hodgkin’s lymphoma, Hodgkin’s lymphoma and ovarian cancer. Chlorambucil-loaded Mesostructured cellular foam (MCF-CLB) was prepared and characterized by XRD, TEM, UV- Vis DRS, FTIR, and texture analysis determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The release of the drug was conducted by simulating the physiological conditions to reproduce the conditions of the organism. The mechanism of drug release from the MCF-CLB host was evaluated. Different mathematical models were used to adjust the experimental data, the best model describing the phenomenon under study over the entire period is the Weibull model. The auspicious results we attained for the release of the drug using the new material. The main advantage of this release is that the rate of release is fast at the beginning and then gradually decreases until 24 h practically all the drug contained in the carrier is released (> 95%).