Facultad Regional Córdoba

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Arquitectura anfis del proceso de fermentación de aceitunas negras naturales: entrenamiento a escala piloto y validación a escala industrial
    (2016) Modesti, Mario; Álvarez, Dolores María Eugenia; Kliger, Luis
    En el proceso de obtención de aceitunas negras naturales, las condiciones inciden sobre la calidad del fruto fermentado y éstas difieren a distintas escalas. El objetivo del trabajo es generar modelos matemáticos que caractericen las propiedades de las aceitunas negras naturales obtenidas a gran escala, a partir de datos del proceso a escala piloto. Se crearon arquitecturas ANFIS con parámetros físico-químicos como entradas, y de textura y color como salidas. Dichas estructuras se entrenaron con datos obtenidos a escala piloto y se validaron con los industriales. Las redes que demostraron mejor desempeño poseen dos funciones de membresia por entrada incorporada, en forma de campana generalizada y una de salida. Las estructuras logradas demostraron habilidad para predecir la evolución del proceso a escala industrial luego de los primeros días de fermentación. Para incrementar su aptitud, sería conveniente probar otros modelos para el tratamiento de datos, tales como las redes neuronales artificiales.
  • Thumbnail Image
    Item
    Arquitectura ANFIS del proceso de fermentación de aceitunas negras naturales ; entrenamiento a escala piloto y validación a escala industrial
    (2016-10-25) Álvarez, Dolores María Eugenia; Kliger, Luis; Modesti, Mario Roberto
    En el proceso de obtención de aceitunas negras naturales, las condiciones inciden sobre la calidad del fruto fermentado y éstas difieren a distintas escalas. El objetivo del trabajo es generar modelos matemáticos que caractericen las propiedades de las aceitunas negras naturales obtenidas a gran escala, a partir de datos del proceso a escala piloto. Se crearon arquitecturas ANFIS con parámetros físico-químicos como entradas, y de textura y color como salidas. Dichas estructuras se entrenaron con datos obtenidos a escala piloto y se validaron con los industriales. Las redes que demostraron mejor desempeño poseen dos funciones de membresia por entrada incorporada, en forma de campana generalizada y una de salida. Las estructuras logradas demostraron habilidad para predecir la evolución del proceso a escala industrial luego de los primeros días de fermentación. Para incrementar su aptitud, sería conveniente probar otros modelos para el tratamiento de datos, tales como las redes neuronales artificiales