Facultad Regional Córdoba

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    HaP/SBA-3 Nanostructured Composite to Remove Fluoride Effectively from Contaminated Water.
    (Univesidsad Tecnológica Nacional., 2021) Cussa , jorgelina; López, Claudia; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; López, Claudia
    Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and textural properties, were successfully applied to remove fluoride from contaminated water. The proposed procedure to prepare HaP/SBA-3 was successful, which acts as supports to anchor the HaP crystals, in nanometer-scale (<2nm), with higher fluoride retention from contaminated water. The free OH- groups of HaP nanocrystals, within the host, facilitated the high-performance fluoride trapping. The fluoride retention activity was much higher than that of pure HaP and the composites HaP/SBA-15 and HaP/MCM-41. Keywords: F- retention; Contaminated water; HaP/SBA-3; Nanocomposites
  • Thumbnail Image
    Item
    HaP/LP-SBA15 Nanocomposite for efficient removal of fluoride from contaminated water.
    (Univesidsad Tecnológica Nacional., 2020) López, Claudia; Cussa, jorgelina; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Cussa, jorgelina
    Hydroxyapatite (HaP) composites and highly ordered large pore mesoporous silica, such as LP-SBA 15 (Large Pore-SBA-15), were developed, characterized by XRD, BET, FTIR, and HRTEM, applied to fluoride removal from contaminated water. The proposed procedure to prepare HaP/LP-SBA-15 was successful, which acts as supports to anchor the HaP crystals, in nanometer-scale (<12 nm), with higher fluoride retention from contaminated water. The free OH- groups of HaP nanocrystals, inside the host, permitted fluoride retention with high capacity. The fluoride holding activity was over 3 orders of magnitude higher than pure HaP.