Facultad Regional Córdoba
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94
Browse
4 results
Search Results
Item Experimental desing optimization of the ods of DBT using V2O5 supported on GA-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box– Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.Item Experimental Desing Optimization of the ODS of DBT using V2O5 supported on Ga-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the catalyst/substrate ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with Ga/Si and V/Si ratios of v1/15 and 1/25, respectively. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support.Item VOx-SBA-15 modified with AI and Ga in ODS of DBT.(Univesidsad Tecnológica Nacional., 2018) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María LauraIn order to adapt current processes to the strict regulatory requirements, several technologies have been developed for deep desulfurization of diesel fuel. The major portion of sulfur compounds in light cycle oils (LCO) are dibenzothiophene (DBT) and alkyl-dibenzothiophenes, which are not easily removable by hydrotreating. Vanadium oxides supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene. The catalytic activity was improved when SBA-15 framework was modified with Al and Ga as heteroatom substituting Si. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium VO4-3 species are responsible for the high activity in the sulfur removal. The Ga modified support with an intermediate V/Si ratio was the most active catalyst, using hydrogen peroxide as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation modified successfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the vanadium active sites improved the activity of the catalysts. The more acidic support allowed better dispersion of the vanadium species due to stronger interaction metal-support. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiophene.Item Sulfur elimination by ODSwith titanium-modified SBA-16.(Univesidsad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura; Ledesma, Brenda; Vallés , Verónica AlejandraNanostructured carbon CMK-3 and mesoporous silica SBA-15 modified with Fe by using different sources of Fe, were used in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) as a model sulfur compound. Fe-CMK-3 and Fe-SBA-15 were prepared by wetness impregnation using FeCl3.6H2O and FeNO3.9H2O as different sources of Fe. A solution of FeCl3.6H2O/ FeNO3.9H2O in ethanol was mixed with the corresponding material solution (CMK-3 or SBA-15) at room temperature. The solution was placed in a rotary evaporator to remove excess of ethanol at about 333 K and 60 rpm. Afterwards, the sample was dried at 373 K for 18 h and was thermally treated in a dynamic inert (N2) atmosphere. The percentage of Fe has been 2 wt.% with respect to carbon in the final FeCl3-CMK-3 and FeNO3-CMK-3 material. Four samples modified with Fe have been prepared and were characterized by XRD, FTIR, XPS, BET, TEM and SEM. These studies indicated that it was possible to obtain a CMK-3 replica successfully from SBA-15, using sucrose as a carbon precursor. Wide angle XRD pattern of the sample modified with FeCl3.6H2O implies the formation of the magnetite phase in the silica channels. The nanomaterial area is significantly smaller with the incorporation of the metal, SBA-15 and CMK-3`s characteristic structure is maintained after the metal is within the host, in agreement with the XRD studies. The catalytic activity was improved when the nanoporous materials were modified with Fe. The nanoporous carbon modified with FeCl3.6H2O was the most active catalyst for ODS of DBT, using hydrogen peroxide (H2O2) as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions.