Facultad Regional Córdoba
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94
Browse
3 results
Search Results
Item Reservorio nanoscópico de hidrógeno a partie de biorresiduos de cáscara de naranjas.(Univesidsad Tecnológica Nacional., 2022) Juárez , Juliana María; Ledesma , Brenda Cecilia; Anunziata , Oscar Alfredo; Gómez Costa , Marcos Bruno; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Ledesma , Brenda CeciliaEste trabajo aborda el enfoque de valorización de biorresiduos para el desarrollo de un novedoso nanomaterial carbonoso para ser utilizado en la adsorción de hidrógeno como una alternativa en el uso de hidrógeno verde. En esta investigación, los carbones activados se sintetizaron a partir de cáscara de naranja utilizando diferentes condiciones de síntesis. Con los carbones activados obtenidos con la mejor estructura y textura se estudió la adsorción de hidrógeno y los efectos en la meso/microporosidad de estos. La activación del carbón se realizó mediante un proceso químico con ácido fosfórico como agente activador, variando la concentración de ácido, la relación sustrato / agente activador y el tiempo de contacto entre ellos. El mejor material se obtuvo utilizando tiempo de carbonización de 1 h, temperatura de carbonización de 470oC, concentración de ácido fosfórico de 50% en peso y con área BET de 1402 m2 / g. Dicho material mejoró significativamente el comportamiento de almacenamiento de H2 en comparación con el carbón nanoestructurado del tipo CMK-3 (3,1% en peso a -196,15 oC y 10 bar). El material sintetizado es prometedor en la absorción de hidrógeno por fuerzas de enlace débiles (fisisorción).Item Adsorción de hidrógeno A 77 K en materiales mesoporosos ordenados SBA-15 dopados con níquel(2016) Carraro, Paola; García Blanco, Andrés; Chanquía, Corina; Sapag, Karim; Eimer, Griselda AlejandraEn el presente trabajo se prepararon materiales mesoporosos ordenados SBA-15, modificados con dos cargas de níquel (2,5 y 10% p/p) por el método de impregnación húmeda. La caracterización textural y estructural de los materiales obtenidos se llevó a cabo a través de isotermas de adsorción-desorción de N2 a 77 K y difracción de rayos X; con lo cual se corroboró el ordenamiento estructural típico de materiales con arreglo hexagonal. Al incrementar la carga de níquel, se observó que la estructura fue preservada, aunque se produce una perdida relativa del ordenamiento estructural. Por otro lado, empleando espectroscopia Ultravioleta Visible con Reflectancia Difusa se infirió sobre la presencia de distintas especies de níquel. Por último, se evaluó la adsorción de H2 a 77 K y 10 bar, y la influencia del contenido de metal en las propiedades estructurales y texturales.Item Hydrogen adsorption in nickel-loaded mesoporous materials(2015) Carraro, Paola; García Blanco, Andrés; Sapag, Karim; Oliva, Marcos Iván; Eimer, Griselda AlejandraEl hidrógeno es considerado una prometedora alternativa renovable y no contaminante para remplazar a los combustibles fósiles. La utilización de hidrógeno como fuente de energía o en vehículos alimentados por pilas de combustible, está limitado por la falta de un sistema de almacenamiento de hidrógeno seguro y eficaz. Actualmente, varios métodos, incluyendo el método de comprensión, licuefacción y almacenamiento en materiales sólidos, han sido propuestos para almacenar hidrógeno [1,2]. Entre estos métodos, el almacenamiento de hidrógeno en adsorbentes es una de las tecnologías más prometedoras. Las dos formas de almacenamiento de hidrógeno en materiales sólidos son la quimisorción, en forma de hidruros metálicos; y la fisisorción, en materiales porosos con grandes áreas superficiales [3]. La principal ventaja de la adsorción física es la reversibilidad y rapidez cinética de la adsorción de hidrógeno en comparación con adsorciones químicas. Sin embargo, el principal problema es la baja entalpia de adsorción lo que resulta en una baja capacidad de almacenamiento en condiciones ambientales. En este trabajo, materiales mesoporos tipo MCM-41 fueron sintetizados y modificados con diferentes cargas de níquel por el método de impregnación húmeda. Los materiales obtenidos fueron caracterizados por difracción de rayos X, adsorción-desorción de N2, espectroscopia fotoelectrónica de rayos X y reducción térmica programada. Con el objetivo de estudiar la contribución del níquel metálico a la capacidad de adsorción de hidrógeno de los materiales mesoporosos, estos fueron reducidos bajo flujo de hidrógeno. La adsorción de hidrógeno se evaluó a 77 y 293 K en un rango de presiones, para las muestras modificadas con níquel y posteriormente reducidas, como se muestra en la Figura 1. Finalmente, se estudió el efecto de las propiedades texturales y químicas de los materiales en la capacidad de adsorción de hidrógeno, centrándose en el rol del níquel en la mejora del almacenamiento de H2 por adsorción.