Facultad Regional Córdoba
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94
Browse
3 results
Search Results
Item Vanadium oxide supported on mesoporous SBA-15 modified with AI and Ga as a highly active catalyst in the ODS of DBT.(Univesidsad Tecnológica Nacional., 2016) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María LauraVanadium oxides supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene as a model sulfur compound. The catalytic activity was improved when SBA-15 framework was modified by adding Al and Ga. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UVeVis eDRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UVeViseDRS and Raman demonstrated that highly dispersed vanadium VO—3 species are responsible for the high activity in the sulfur removal. The Ga modified support with an intermediate V/Si ratio of 1/30 was the most active catalyst for ODS of DBT, using hydrogen peroxide as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation into the support modified suc cessfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the active vanadium sites improved the activity of the catalysts. The high dispersion depended on the vanadium loading and on the nature of the support. The more acidic support allowed better dispersion of the vanadium species due to stronger interaction metal-support. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiopheneItem Vanadium oxide supported on mesoporous SBA-15 modified with AI and Ga as catalysts in ODS of DBT.(Univesidsad Tecnológica Nacional., 2017) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María LauraIn order to adapt current processes to the strict regulatory requirements, several technologies have been developed for deep desulfurization of diesel fuel. The major portion of sulfur in light cycle oils (LCO) is found in dibenzothiophene (DBT) and alkyl-dibenzothiophenes, which are not easily removable by hydrotreating, because they require high pressure and hydrogen consumption. Vanadium oxides supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene as a model sulfur compound. The catalytic activity was improved when SBA-15 framework was modified with Al and Ga as heteroatom substituting framework Si. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium VO4-3 species are responsible for the high activity in the sulfur removal. The Ga modified support with an intermediate V/Si ratio of 1/30 was the most active catalyst for ODS of DBT, using hydrogen peroxide as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation into the support modified successfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the active vanadium sites improved the activity of the catalysts. The high dispersion depended on the vanadium loading and on the nature of the support. The more acidic support allowed better dispersion of the vanadium species due to stronger interaction metal-support. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiophene.Item Iridium-supported SBA-15 modified with Ga and Al as a highly active catalyst in the hydrodenitrogenation of quinoline(2020) Ledesma, Brenda Cecilia; Martínez, María Laura; Beltramone, Andrea RaquelIr-supported SBA-15 was studied in the hydrodenitrogenation (HDN) of quinoline as a model nitrogen com- pound. The activity was improved when Si-SBA-15 support was modified with Ga and Al. Characterization of the catalysts was performed by XRD, N2 adsorption, XPS, H2 chemisorption, TEM, TPR, NMR and Py-FTIR. Dispersion and nature of the iridium species are dependent parameters on the support characteristics. Better activity for the elimination of the nitrogen atom was observed with Ir-Ga-SBA-15 as compared to Ir-Al-SBA-15 at 250 and 300 °C. However, the TON value for Ir-Al-SBA-15 was higher than Ir-Ga-SBA-15 at 300 °C, indicating the influence of the stronger Bronsted acidity in the elimination of the nitrogen atom at higher temperature. The enhanced activity was attributed to the particularly good dispersion of the iridium catalytic centers and to the synergic effect of Bronsted and Lewis acid sites, derived from Ga or Al incorporation. Ga-SBA-15 with 1 wt.% of iridium loading was the most active catalyst for HDN of quinoline. 95% of nitrogen elimination was attained at short time in mild conditions. The reusability of the catalyst presents it as potential catalyst for HDN process.