FRVT - Producción Científica

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/375

Browse

Search Results

Now showing 1 - 10 of 39
  • Thumbnail Image
    Item
    Interpretation of Voltage Measurements in Cutting Torches.
    (2015) Prevosto, Leandro; Kelly, Héctor; Minotti, Fernando Oscar; Mancinelli, Beatriz
    Anode-cathode and nozzle-cathode voltages, plenum pressure and gas mass flow measurements in a low current (30 A) cutting torch, operated with oxygen gas, are used as inputs for an electrical model coupled to a simplified fluid model, in order to infer some properties of the plasma-gas structure that are difficult to measure.
  • Thumbnail Image
    Item
    Diagnostics of cutting arc plasmas.
    (2014) Prevosto, Leandro; Kelly, Héctor
    An over-view of several remote and invasive diagnostics to characterize cutting arcs at the nozzle exit-anode gap as well as inside the nozzle is reported. A briefly description of the experimental set-ups, together with the main results obtained in a 30 A high-energy density cutting torch (including the calculation assumptions) are given.
  • Thumbnail Image
    Item
    Numerical modeling of the gas breakdown development in the space–charge layer inside the nozzle of a transferred arc torch
    (2012) Mancinelli, Beatriz; Prevosto, Leandro; Minotti, Fernando Oscar
    Double–arcing is a phenomenon that occurs when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode with the nozzle, and another that connects the nozzle with the anode. Experimental evidence suggests that the reason for double–arcing is a Townsend like breakdown occurring in the thin space–charge layer, which separates the plasma from the metallic nozzle, due to the high voltage drop across it. Breakdown phenomena in a gas between metallic electrodes have been extensively studied; however the present case involves breakdown of a high–temperature gas between one electrode (the nozzle) and a plasma boundary. A 1–D model of the gas breakdown development in the space–charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen is reported. The dynamics of the discharge is analyzed. The kinetic scheme includes processes of ionization of heavy particles by electron impact, electron attachment, electron–ion recombination and ion–ion recombination.
  • Thumbnail Image
    Item
    On the reduction of the third-order harmonic losses in low–voltage power cables used for feeding large LED and CFL lighting loads.
    (2017) Milardovich, Natalio; Prevosto, Leandro; Lara, Miguel Ángel; Milardovich, Diego
    An experimental investigation of diversity factors for LED (light emitting diode) in combination with CFL (compact fluorescent lamps) and LED lamps is presented in this paper. Attention was paid to the reduction of low–order harmonic currents, especially the third one; which is mainly responsible for the strong increase in power losses in the neutral conductor of low–voltage installations. The harmonic currents drawn by several LED and CFL lamps with nominal powers < 25 W were first measured to investigate the electrical characteristics of individual lamps. The results showed a sensible reduction of the harmonic current of third order and therefore a marked reduction of the power losses associated with them. The convenience of having LED lamps designed to operate as two–phase loads is suggested for certain applications of significant power demand.
  • Thumbnail Image
    Item
    On the dynamic behavior of the anode–arc–root at the nozzle surface in a non-transferred plasma torch
    (2012) Prevosto, Leandro; Risso, Marcelo Natalio; Infante, Damián Leandro; Cejas, Ezequiel; Kelly, Héctor; Mancinelli, Beatriz
    The dynamic behavior of the anode–arc–root at the nozzle surface of a plasma torch was experimentally investigated in this work. A gas (N2) vortex–stabilized non–transferred arc torch with a thoriated tungsten rod (2wt %) cathode (3.2 mm diameter) and a coaxial anode (5 mm diameter, 30 mm length) was used in the experiment. By using a sweeping Langmuir probe in floating condition, the voltage of the plasma jet outside the nozzle was inferred. Arc voltage waveforms were also obtained. Data have been obtained for an arc current of 100 A and a gas flow rate of 30 Nl min-1. A typical sawtooth shape (i.e., restrike mode) (with a fluctuating level of º  25 %) and a dominant frequency of º 6.5 kHz was observed in the arc voltage waveforms, which is attributed to anode–arc–root movements along the anode surface followed by a restrike at a certain point close to the cathode. By performing a time correlation between the probe and arc voltage oscillograms together with simple estimations, the amplitude of the movement of the arc–root along the anode surface as well its velocity were inferred.
  • Thumbnail Image
    Item
    On the influence of the nozzle length on the arc properties in a cutting torch
    (2009) Prevosto, Leandro; Kelly, Héctor; Risso, Marcelo Natalio; Infante, Damián Leandro
    In this work, an experimental study on the influence of the nozzle geometry on the physical properties of a cutting arc is reported. Ion current signals collected by an electrostatic probe sweeping across a 30 A oxygen cutting arc at 3.5 mm from the nozzle exit were registered for different nozzle lengths. The temperature and density radial profiles of the arc plasma were found in each case by an inversion procedure of these signals. A comparison between the obtained results shows that the shorter nozzle (RN = 0.50 mm, LN = 4.5 mm operated at 0.7 MPa and 35 Nl/min) produces a thinner and hotter arc than the larger nozzle (RN = 0.50 mm, LN = 9.0 mm operated at 1.1 MPa and 20 Nl/min). This behavior is attributed to the marked difference of gas flow rate due to the clogging effect. A smaller gas mass flow reduces the convective cooling at the arc border and decreases the power dissipation of the arc column, resulting in small axis temperatures.
  • Thumbnail Image
    Item
    The Impact of the Use of Large Non-Linear Lighting Loads in Low-Voltage Networks.
    (IntechOpen., 2018) Milardovich, Natalio; Prevosto, Leandro; Lara, Miguel; Milardovich, Diego
    The principal numerical and experimental results obtained by the authors on the har monic power losses in low-voltage networks in the lighting area have been summarized in this review. Light-emitting diodes (LEDs) and compact fluorescent lamp (CFL) loads were considered. Four-core cables and four single-core cable arrangements were exam ined. The cables were modeled by using electromagnetic finite element analysis software. It was found that the cross section of the neutral conductor plays an important role in the derating of the cable ampacity due to the presence of a high level of triplen harmonics in the distorted current. In order to reduce the third-order harmonic currents in the neutral conductor, an experimental investigation of diversity factors for LED in combination with CFL and LED lamps was also performed. Attention was paid to the reduction of the third order harmonic current, which is mainly responsible for the strong increase in power losses in the neutral conductor of low-voltage installations. The convenience of having LED lamps designed to operate as two-phase loads is suggested for certain applications.
  • Thumbnail Image
    Item
    On the Double-Arcing Phenomenon in a Cutting Arc Torch.
    (2011) Prevosto, Leandro; Kelly, Héctor; Mancinelli, Beatriz
    Transferred arc plasma torches are widely used in industrial cutting process of metallic materials because of their ability to cut almost any metal and the very high productivity that can be achieved with this technology (Boulos et al., 1994). The plasma cutting process is characterized by a transferred electric arc that is established between a cathode, which is a part of the cutting torch, and a work-piece (the metal to be cut) acting as the anode. In order to obtain a high-quality cut, the plasma jet must be as collimated as possible and also must have a high power density. To this end, the transferred arc is constricted by a metallic tube (a nozzle) with a small inner diameter (of the order of one millimeter). Usually, a vortex-type flow with large axial and azimuthal velocity components is forced through the nozzle to provide arc stability and to protect its inner wall. In such case the hot arc is confined to the center of the nozzle, while centrifugal forces drive the colder fluid towards the nozzle walls, which are thus thermally protected. The axial component of the gas flow continuously supplies cold fluid, providing an intense convective cooling at the arc fringes. In addition, the vortex flow enhances the power dissipation per unit length of the arc column, resulting in high temperatures at the arc axis. Since the nozzle is subjected to a very high heat flux, it is made of a metal with a high thermal conductivity (copper is broadly used). The arc current is of the order of ten up to a few hundred amperes, and the gas pressure is several atmospheres. Arc axis temperatures around 15 kK are usual, but larger values, close to 25 kK or even higher, have been reached.
  • Thumbnail Image
    Item
    Investigation of the relevant kinetic processes in the initial stage of a double-arcing instability in oxygen plasmas.
    (2018) Mancinelli, Beatriz; Prevosto, Leandro; Chamorro, Juan Camilo; Minotti, Fernando; Kelly, Héctor
    A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen operated cutting torch was considered. The energy balance and chemistry processes in the dis charge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of 107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least 109 K/s, mainly due to reactions of preliminary dissocia tion of oxygen molecules via the highly excited electronic state populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.
  • Thumbnail Image
    Item
    Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds.
    (2018) Pérez Pizá, María Cecilia; Prevosto, Leandro; Zilli, Carla; Cejas, Ezequiel; Kelly, Héctor; Balestrasse, Karina
    Diaporthe/Phomopsis (D/P) is a complex of seed-borne fungi that severely affects soybean (Glycine max (L.) Merrill), one of the most important crops worldwide. Non-thermal plasma treatment is a fast, economic and ecological friendly technology that can destroy seed-borne fungi and improve seed quality. Soybean seeds were exposed for 1, 2 and 3 minutes to a quasi-stationary (50 Hz) dielectric barrier discharge plasma operating at atmospheric pressure air. Different carrying gases (O2 and N2) and barrier-insulating materials were used. In this work we focused on the ability of plasma to control D/P in soybean seeds and to enhance seed quality. To support these results, different antioxidant enzymes (catalase, superoxide dismutase and guaiacol peroxidase), lipid peroxidation and phytohormones (ABA and AIA) content in seeds were evaluated. The results demonstrated reductions of 29% in catalase activity and increments of 30% in glutathione content after plasma treatment, reversing the oxidative damage caused by D/P fungi. This eco-friendly technology improved soybean seed quality and, for the first time, its efficiency in controlling soybean seed-borne pathogen fungi that colonize the inside of seeds was demonstrated.