Mostrar el registro sencillo del ítem
Optimal design of a two-stage membrane system for hydrogen separation in refining processes.
dc.creator | Arias, Ana Marisa | |
dc.creator | Mores, Patricia Liliana | |
dc.creator | Scenna, Nicolás José | |
dc.creator | Caballero, José Antonio | |
dc.creator | Mussati, Sergio Fabián | |
dc.creator | Mussati, Miguel Ceferino | |
dc.date.accessioned | 2024-04-03T17:29:56Z | |
dc.date.available | 2024-04-03T17:29:56Z | |
dc.date.issued | 2018-10-31 | |
dc.identifier.citation | . Processes, 6(11), Article 11 | es_ES |
dc.identifier.issn | 2227-9717 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/10256 | |
dc.description.abstract | This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year−1 was obtained for treating 100 kmol·h−1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two suboptimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision support tool in the process system engineering field for designing, simulating, and optimizing membranebased systems for H2 separation in a particular industrial case; and the presented optimization resultsprovide useful guidelines to assist in selecting the optimal configuration and operating mode. | es_ES |
dc.description.sponsorship | Universidad Tecnológica Nacional (UTN) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) | es_ES |
dc.format | es_ES | |
dc.language.iso | eng | es_ES |
dc.rights | openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.source | Processes, 6(11), Article 11 | es_ES |
dc.subject | Hidrógeno | es_ES |
dc.subject | Proceso de separación | es_ES |
dc.subject | NLP | es_ES |
dc.subject | GAMS | es_ES |
dc.subject | Ingeniería química | es_ES |
dc.title | Optimal design of a two-stage membrane system for hydrogen separation in refining processes. | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.affiliation | Fil: Arias, Ana Marisa. Universidad Tecnológica Nacional. Facultad Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI) ; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) ; Argentina. | es_ES |
dc.description.affiliation | Fil: Mores, Patricia Liliana. Universidad Tecnológica Nacional. Facultad Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI) ; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) ; Argentina. | es_ES |
dc.description.affiliation | Fil: Scenna, Nicolás José. Universidad Tecnológica Nacional. Facultad Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería (CAIMI) ; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) ; Argentina. | es_ES |
dc.description.affiliation | Fil: Caballero, José Antonio. University of Alicante. Department of Chemical Engineering ; España. | es_ES |
dc.description.affiliation | Fil : Mussati, Sergio Fabián. Consejo Nacional de investigaciones Científicas y Técnicas (CONICET). Instituto de Desarrollo y Diseño (INGAR) ; Argentina. | es_ES |
dc.description.affiliation | Fil: Mussati, Miguel Ceferino. Consejo Nacional de investigaciones Científicas y Técnicas (CONICET). Instituto de Desarrollo y Diseño (INGAR) ; Argentina. | es_ES |
dc.description.peerreviewed | Peer Reviewed | es_ES |
dc.type.version | acceptedVersion | es_ES |
dc.rights.use | Acceso abierto, con fines de estudio e investigación. Siempre con la mención de los autores. | es_ES |
dc.identifier.doi | https://doi.org/10.3390/pr6110208 | |
dc.creator.orcid | 0000-0002-6716-6633 | es_ES |
dc.creator.orcid | 0000-0001-6026-142X | es_ES |
dc.creator.orcid | 0000-0002-1129-8725 | es_ES |
dc.creator.orcid | 0000-0001-6470-2907 | es_ES |
dc.creator.orcid | 0000-0002-4132-0292 | es_ES |
dc.creator.orcid | 0000-0002-6104-5179 | es_ES |