Mostrar el registro sencillo del ítem
Barreras reactivas permeables como reactores químicos para remediación de aguas subterráneas impactadas con BTEX y MTBE
dc.contributor.advisor | Britch, Javier | |
dc.creator | Pepino Minetti, Roberto | |
dc.date.accessioned | 2021-05-27T17:56:48Z | |
dc.date.available | 2021-05-27T17:56:48Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/5174 | |
dc.description.abstract | Este trabajo de tesis presenta un estudio sobre la aplicación de una cupla de oxidantes químicos integrados con otros materiales de manera tal de poder ser aplicado como relleno de barreras reactivas permeables. Dicho sistema ha sido desarrollado para el tratamiento de aguas subterráneas impactadas principalmente con compuestos orgánicos provenientes de derrames de naftas. Uno de los oxidantes, el ferrato de potasio, es un oxidante químico novedoso, por dicho motivo se sintetizó en laboratorio a través de diferentes vías: húmeda, seca y electroquímica. Posteriormente, se estudiaron las propiedades de interés más importantes del ferrato de potasio como ser: su estabilidad en el medio acuoso, su capacidad para degradar BTEX y MtBE disueltos en agua y el efecto de la variación del pH del medio. A continuación, se estudió el comportamiento conjunto del ferrato de potasio y del persulfato de sodio, siendo el persulfato el último compuesto químico en ser empleado en remediación de agua subterránea por oxidación química in situ en la actualidad. Se desarrolló luego un pellet constituido por carbón activado, ligante cementicio, caolín y ambos oxidantes. Dicho pellet fue ensayado como relleno de barreras reactivas permeables considerando sus propiedades estructurales, su capacidad de adsorción y degradación de BTEX y MtBE. Para finalizar, se identificaron las principales características hidrogeológicas a considerar en el diseño de una barrera, que sumadas al desarrollo matemático de los principales fenómenos fisicoquímicos que suceden dentro de la misma, permitieron plantear un procedimiento de diseño de barreras reactivas permeables como si se tratase de un reactor químico. | es_ES |
dc.description.abstract | This aim of this thesis is to study the application of chemical oxidant combinations integrated with other materials in such a way that it can be applied as a filling of permeable reactive barriers. This system has been developed to treat contaminated groundwater with organic compounds mainly derived from gasoline spills. Potassium ferrate is a novel chemical oxidant with great potential for this issue and whose synthesis mechanism can be carried out in the laboratory through three different ways: wet, dry and electrochemical. Furthermore, the most relevant properties of interest of potassium ferrate were studied, such as its stability in the aqueous medium, its capacity to degrade BTEX and MtBE dissolved in water and the effect of the pH variation of the medium. Next, a research on the joint behaviour of potassium ferrate and sodium persulfate was performed, being persulfate the latest chemical compound to be used in groundwater remediation by in situ chemical oxidation at present. A fill (pellet) was developed, consisting of activated carbon, cementitious binder, kaolin, and both oxidants. It was then tested as a reactive material of permeable barriers considering its structural properties, its adsorption capacity, and degradation of BTEX and MtBE. Finally, the main hydrogeological attributes to be considered in the design of a barrier were identified, which together with the mathematical development of the main physicochemical phenomena that occur within it, allowed the proposition of a permeable reactive barrier design procedure as if it were a chemical reactor. | es_ES |
dc.format | application/pdf | es_ES |
dc.language.iso | spa | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.subject | Barreras reactivas | es_ES |
dc.subject | BTEX-Mtbe | es_ES |
dc.subject | Oxidación química | es_ES |
dc.subject | Agua subterránea | es_ES |
dc.title | Barreras reactivas permeables como reactores químicos para remediación de aguas subterráneas impactadas con BTEX y MTBE | es_ES |
dc.type | info:eu-repo/semantics/doctoralThesis | es_ES |
dc.rights.holder | Pepino Minetti, Roberto | es_ES |
dc.description.affiliation | Fil: Pepino Minetti, Roberto. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Dirección de Posgrado. Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA); Argentina. | es_ES |
dc.type.version | acceptedVersion | es_ES |
dc.relation.references | OSN. El problema del agua potable en el interior del país. Ministerio Obras Públicas, editor1942. | es_ES |
dc.relation.references | Bedient PB, Rifai HS, Newell CJ. Ground water contamination : transport and remediation. 2nd ed. Upper Saddle River, NJ: Prentice Hall PTR; 1999. xv, 604 p. p. | es_ES |
dc.relation.references | Pawlowski MH. Analytical and Field Test Methods for Measuring BTEX Metabolite Occurrence and Transport in Groundwater. 1998. Contract No.: 19980727 037. | es_ES |
dc.relation.references | US-EPA OoUST. Semiannual Report Of UST Performance Measures - End Of Fiscal Year 2015 (October 1, 2014 – September 30, 2015). Environmental Protection Agency;2015 | es_ES |
dc.relation.references | Maravanki PS, Picco EG, Servetti GI. Riesgo de Contaminación Ambiental en SASH (Sistema de Almacenamiento Subterráneo de Hidrocarburos) asociado a la calidad de los controles en Argentina. 2º Simposio Argentino sobre Riesgo Ambiental; UTN, Córdoba, Argentina2011. | es_ES |
dc.relation.references | Farhadian M, Vachelard C, Duchez D, Larroche C. In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource Technology. 2008;99(13):5296-308. | es_ES |
dc.relation.references | Liang SH, Kao CM, Kuo YC, Chen KF, Yang BM. In situ oxidation of petroleumhydrocarbon contaminated groundwater using passive ISCO system. Water Research. 2011;45(8):2496-506. | es_ES |
dc.relation.references | Farhadian M, Duchez D, Vachelard C, Larroche C. Monoaromatics removal from polluted water through bioreactors—A review. Water Research. 2008;42(6):1325-41. | es_ES |
dc.relation.references | Newell CJ, Connor JA. Characteristics of Dissolved Petroleum Hydrocarbon Plumes: Results From Four Studies.; 1998. | es_ES |
dc.relation.references | (USEPA-IRIS) IRIS-USEPA. Summaries for Benzene 2000. | es_ES |
dc.relation.references | (WHO-IARC) IAfRoC-WHO. Monographs on the Evaluation of Carcinogenic Risks to Humans, Supplement 7. 1987. | es_ES |
dc.relation.references | US-EPA National Primary Drinking Water Regulations, EPA 816-F-09-004 (2009). | es_ES |
dc.relation.references | Agency for Toxic Substances and Disease Registry (ASTDR) USDoHaHS. Toxicological Profile Information Sheet. 2008. | es_ES |
dc.relation.references | (ITRC) ITRC. Overview of Groundwater Remediation Technologies for MtBE and TBA. 2005. | es_ES |
dc.relation.references | Kao CM, Prosser J. Evaluation of natural attenuation rate at a gasoline spill site. Journal of Hazardous Materials. 2001;82(3):275-89. | es_ES |
dc.relation.references | Davis LC, Erickson LE. A review of bioremediation and natural attenuation of MTBE. Environmental Progress. 2004;23(3):243-52. | es_ES |
dc.relation.references | Tsitonaki A, Bjerg PL, Smets BF, Mosbæk H. Treatment trains for the remediation of aquifers polluted with MTBE and other xenobiotic compounds.: Technical University of Denmark; 2008. | es_ES |
dc.relation.references | Grady SJ. A National Survey of Methyl tert-Butyl Ether and Other Volatile Organic Compounds in Drinking-Water Sources: Results of the Random Survey. U.S. Geological Survey; 2003. | es_ES |
dc.relation.references | (US-EPA) USEPA. Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Methyl Tertiary-Butyl Ether (MtBE). 1997. Contract No.: EPA- 822-F-97-009. | es_ES |
dc.relation.references | (WHO-IARC) IAfRoC-WHO. Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances.; 1999. | es_ES |
dc.relation.references | Board CEPASWRC. MTBE: Regulations and Drinking Water Monitoring Results. http://wwwwaterboardscagov/drinking_water/certlic/drinkingwater/MTBEshtml. 2014. | es_ES |
dc.relation.references | Residuos Peligrosos, Ley Nacional Nº 24051 Decreto Reglamentario Nº 831/93 (1993). | es_ES |
dc.relation.references | (US-EPA) USEPA. Evaluation of Groundwater Extraction Remedies: Phase II, vol. I, Summary Report. EPA Office of Emergency and Remedial Responses, Washington, DC; 1992. Contract No.: Publication 9355.4-05. | es_ES |
dc.relation.references | Connor JA, Paquette S, McHugh T, Gie E, Hemingway M, Bianchi G. Application of natural resource valuation concepts for development of sustainable remediation plans for groundwater. Journal of environmental management. 2017;204(Part 2):721-9. | es_ES |
dc.relation.references | (US-EPA) USEPA. Guía para el Ciudadano sobre Bombeo y Tratamiento. 2003. Contract No.: EPA 542-F-01-025S | es_ES |
dc.relation.references | Obiri-Nyarko F, Grajales-Mesa SJ, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere. 2014;111(Supplement C):243-59. | es_ES |
dc.relation.references | Naftz DL, Morrison SJ, Fuller CC, Davis JA. Handbook of Groundwater Remediation using Permeable Reactive Barriers. San Diego: Academic Press; 2003. | es_ES |
dc.relation.references | (US-EPA) USEPA. Guía para el Ciudadano para las Barreras Reactivas Permeables. 2001. Contract No.: EPA 542-F-01-005S. | es_ES |
dc.relation.references | Glatstein DACP, Magalí.; Francisca, Franco M. Diseño de barreras "inteligentes" para la remediación de aguas subterráneas. XX Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica. 2010. | es_ES |
dc.relation.references | Puls RW. LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: LESSONS LEARNED ON DESIGN, CONTAMINANT TREATMENT, LONGEVITY, PERFORMANCE MONITORING AND COST - AN OVERVIEW. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S, editors. Soil and Water Pollution Monitoring, Protection and Remediation. Dordrecht: Springer Netherlands; 2006. p. 221-9. | es_ES |
dc.relation.references | Gusmão AD, de Campos TMP, Nobre MdMM, Vargas EdA. Laboratory tests for reactive barrier design. Journal of hazardous materials. 2004;110(1-3):105-12. | es_ES |
dc.relation.references | Fogler S. Elementos de Ingeniería de las reacciones químicas. 4º edición ed: Pearson; 2008. | es_ES |
dc.relation.references | Mackay DM, Cherry JA. Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology. 1989;23(6):630-6. | es_ES |
dc.relation.references | Gavaskar A, Gupta N, Sass B, Janosy R, Hicks J. Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation. In: Battelle, editor.: Interstate Technology & Regulatory Council (ITRC); 2000. | es_ES |
dc.relation.references | (N.R.C.) NRCUSCoGWCA. Alternatives for ground water cleanup. Washington, D.C.: National Academy Press; 1994. xvi, 315 p. | es_ES |
dc.relation.references | (US-EPA) USEPA. Treatment technologies for site cleanup - Annual status report (12th edition). 2007. Contract No.: EPA-542-R-07-012. | es_ES |
dc.relation.references | Siegrist RL, Crimi M, Simpkin TJ. In situ chemical oxidation for groundwater remediation2013. xliii, 678 pages p. 38. Suthersan SS, Payne FC. In situ remediation engineering. Boca Raton, Fla.: CRC Press; 2005. 511 p. p. | es_ES |
dc.relation.references | Krembs FJ, Siegrist RL, Crimi ML, Furrer RF, Petri BG. ISCO for Groundwater Remediation: Analysis of Field Applications and Performance. Ground Water Monitoring & Remediation. 2010;30(4):42-53. | es_ES |
dc.relation.references | Team TITRC-ISCO. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater 2005. | es_ES |
dc.relation.references | CRC Handbook of Chemistry and Physics. 99th ed: CRC Press 2018. | es_ES |
dc.relation.references | Watts RJ, Haller DR, Jones AP, Teel AL. A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton's reactions. Journal of Hazardous Materials. 2000;76(1):73-89. | es_ES |
dc.relation.references | 43. Watts R, Teel A. Treatment of Contaminated Soils and Groundwater Using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 2006;10(1):7. | es_ES |
dc.relation.references | Waldemer RH, Tratnyek PG. Kinetics of Contaminant Degradation by Permanganate. Environmental Science & Technology. 2006;40(3):1055-61. | es_ES |
dc.relation.references | Dey JC, Rosenwinkel P, Wheeler K. In situ remediation of MTBE utilizing ozone. Remediation Journal. 2002;13(1):77-85. | es_ES |
dc.relation.references | Garoma T, Gurol MD, Osibodu O, Thotakura L. Treatment of groundwater contaminated with gasoline components by an ozone/UV process. Chemosphere. 2008;73(5):825-31. | es_ES |
dc.relation.references | Kuo C-H, Chen S-M. Ozonation and Peroxone Oxidation of Toluene in Aqueous Solutions. Industrial & Engineering Chemistry Research. 1996;35(11):3973-83. | es_ES |
dc.relation.references | Burbano AA, Dionysiou DD, Suidan MT, Richardson TL. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research. 2005;39(1):107-18 | es_ES |
dc.relation.references | Burbano Arturo A, Dionysiou Dionysios D, Richardson Teri L, Suidan Makram T. Degradation of MTBE Intermediates using Fenton’s Reagent. Journal of Environmental Engineering. 2002;128(9):799-805. | es_ES |
dc.relation.references | Neppolian B, Jung H, Choi H, Lee JH, Kang J-W. Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion. Water Research. 2002;36(19):4699-708. | es_ES |
dc.relation.references | Ray AB, Selvakumar A, Tafuri AN. Treatment of MTBE-Contaminated Waters with Fenton's Reagent. Remediation Journal. 2002;12(3):81-93. | es_ES |
dc.relation.references | Damm JH, Hardacre C, Kalin RM, Walsh KP. Kinetics of the oxidation of methyl tertbutyl ether (MTBE) by potassium permanganate. Water Research. 2002;36(14):3638-46. | es_ES |
dc.relation.references | Singh N, Lee DG. Permanganate: A Green and Versatile Industrial Oxidant. Organic Process Research & Development. 2001;5(6):599-603. | es_ES |
dc.relation.references | Mitani MM, Keller AA, Bunton CA, Rinker RG, Sandall OC. Kinetics and products of reactions of MTBE with ozone and ozone/hydrogen peroxide in water. Journal of Hazardous Materials. 2002;89(2):197-212. | es_ES |
dc.relation.references | Kakarla PKC, Watts RJ. Depth of Fenton-like oxidation in remediation of surface soil. Journal of Environmental Engineering. 1997;11. | es_ES |
dc.relation.references | Siegrist RL, Urynowicz MA, West OR, Crimi ML, Lowe KS. Principles and practices of in situ chemical oxidation using permanganate. Columbus; 2001. | es_ES |
dc.relation.references | Siegrist RL, Crimi M, Simpkin TJ. In situ chemical oxidation for groundwater remediation2011. xliii, 678 pages p. | es_ES |
dc.relation.references | Block PA, Brown RA, Robinson D, editors. Novel Activation Technologies for Sodium Persulfate. In Situ Chemical Oxidation Proceedings, Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds; 2004. | es_ES |
dc.relation.references | Crimi M, Taylor J. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil Sediment Contamination. 2007;16:29-45. | es_ES |
dc.relation.references | Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT. Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate: Kinetics and Products. Environmental Science & Technology. 2007;41(3):1010-5. | es_ES |
dc.relation.references | Tratnyek P, Powell J, Waldemer RH. Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics 2007. | es_ES |
dc.relation.references | Tsitonaki A, Petri B, Crimi M, Mosbaek H, Siegrist R, Bjerg P. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Environmental Science & Technology. 2010;40:55-91 | es_ES |
dc.relation.references | Neta P, Madhavan V, Zemel H, Fessenden R. Rate constants and mechanisms of reaction of SO4 .- with aromatic compounds. Journal of the American Chemycal Society. 1977;99:163-4. | es_ES |
dc.relation.references | Berlin AA. Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinet Catal. 1986;27:339. | es_ES |
dc.relation.references | . Matzek LW, Carter KE. Activated persulfate for organic chemical degradation: A review. Chemosphere. 2016;151:178-88. | es_ES |
dc.relation.references | Bennedsen LR, Krischker A, Jorgensen TH, Sogaard EG. Mobilization of metals during treatment of contaminated soils by modified Fenton's reagent using different chelating agents. Journal of hazardous materials. 2012;199-200:128-34. | es_ES |
dc.relation.references | Huang K-C, Couttenye RA, Hoag GE. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere. 2002;49(4):413-20. | es_ES |
dc.relation.references | Huang K-C, Zhao Z, Hoag GE, Dahmani A, Block PA. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere. 2005;61(4):551- 60 | es_ES |
dc.relation.references | . Liang C, Huang C-F, Chen Y-J. Potential for activated persulfate degradation of BTEX contamination. Water Research. 2008;42(15):4091-100.70. Sra KS. Persulfate Persistence and Treatability of Gasoline Compounds: University of Waterloo 2010. | es_ES |
dc.relation.references | Tsitonaki A. Treatment trains for the remediation of aquifers polluted with MTBE and other xenobiotic compounds: Technical University of Denmark 2008. | es_ES |
dc.relation.references | Liang C, Huang C-F, Mohanty N, Kurakalva RM. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere. 2008;73(9):1540-3. | es_ES |
dc.relation.references | Tsitonaki A, Petri B, Crimi M, MosbÆK H, Siegrist RL, Bjerg PL. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology. 2010;40(1):55-91. | es_ES |
dc.relation.references | Sharma VK. Potassium ferrate(VI): an environmentally friendly oxidant. Advances in Environmental Research. 2002;6(2):143-56. | es_ES |
dc.relation.references | Graham N, Jiang CC, Li XZ, Jiang JQ, Ma J. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere. 2004;56(10):949-56. | es_ES |
dc.relation.references | Ibanez JG, Tellez-Giron M, Alvarez D, Garcia-Pintor E. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 6: Microscale Production of Ferrate. Journal of Chemical Education. 2004;81(2):251. | es_ES |
dc.relation.references | Ninane L, Kanari N, Criado C, Jeannot C, Evrard O, Neveux N. New Processes for Alkali Ferrate Synthesis. Ferrates. ACS Symposium Series. 985: American Chemical Society; 2008. p. 102-11. | es_ES |
dc.relation.references | Wood RH. The Heat, Free Energy and Entropy of the Ferrate(VI) Ion. Journal of the American Chemical Society. 1958;80(9):2038-41. | es_ES |
dc.relation.references | Wulfsberg G. Inorganic chemistry. Sausalito, Calif.: University Science Books; 2000. xix, 978 p. p. | es_ES |
dc.relation.references | Graham N, Jiang C-c, Li X-Z, Jiang J-Q, Ma J. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere. 2004;56(10):949-56. 81. Moeser L. Zur Kenntniss der eisensauren Salze. Journal für Praktische Chemie. 1897;56(1):425-37. | es_ES |
dc.relation.references | Delaude L, Laszlo P. A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)(1). The Journal of organic chemistry. 1996;61(18):6360-70. | es_ES |
dc.relation.references | Hoppe ML, Schlemper EO, Murmann RK. Structure of dipotassium ferrate(VI). Acta Crystallographica Section B. 1982;38(8):2237-9. | es_ES |
dc.relation.references | Carr JD, Kelter PB, Tabatabai A, Splichal D, Erickson J, McLaughlin CW. Properties of ferrate(VI) in aqueous solution: an alternate oxidant in wastewater treatment. In: Jolley RL, editor. Proceedings of Conference on Water Chlorination Chem Environment Impact Health Eff,: Lewis Chelsew; 1985. p. 1285-98. | es_ES |
dc.relation.references | Li C, Li XZ, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere. 2005;61(4):537-43. | es_ES |
dc.relation.references | Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. Journal of Hazardous Materials. 2007;146(3):617-23. | es_ES |
dc.relation.references | Sharma VK. Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordination Chemistry Reviews. 2013;257(2):495-510. | es_ES |
dc.relation.references | Licht S, Yu X. Recent Advances in Fe(VI) Synthesis. Ferrates. ACS Symposium Series. 985: American Chemical Society; 2008. p. 2-51. | es_ES |
dc.relation.references | Thompson GW, Ockerman LT, Schreyer JM. Preparation and Purification of Potassium Ferrate. VI. Journal of the American Chemical Society. 1951;73(3):1379-81. | es_ES |
dc.relation.references | Williams DH, Riley JT. Preparation and alcohol oxidation studies of the ferrate(VI) ion, FeO42−. Inorganica Chimica Acta. 1974;8:177-83. | es_ES |
dc.relation.references | Mácová Z, Bouzeka K, Híves J, Sharmac V, Terrync RJ, Baumc C. Research progress in the electrochemical synthesis of ferrate(VI). Electrochimica Acta. 2009;54:2673-83. | es_ES |
dc.relation.references | Kiselev YM, Kopelev NS, Zavyalova NA, Perfiliev YD, Kazin PE. Russ J Inorg Chem 1989;34. | es_ES |
dc.relation.references | Híveš J, Gál M, Kerekeš K, Kubiňáková E, Mackuľak T. Electrochemical Ferrates(VI) Preparation and Wastewater Treatment. Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation. ACS Symposium Series. 1238: American Chemical Society; 2016. p. 221-40. | es_ES |
dc.relation.references | Benová M, Híveš J, Bouzek K, Sharma VK. Electrochemical Ferrate(VI) Synthesis: A Molten Salt Approach. Ferrates. ACS Symposium Series. 985: American Chemical Society; 2008. p. 68-80. | es_ES |
dc.relation.references | López JR, Peñuelas DC, Mendez PF, Pérez S, Calderón I, Ortiz JR. Potassium Ferrate and/or Sodium Ferrate generatrion using a prototype of Electrochemical Reactor without Membrane. ECS Transactions. 2008;15(1):403-10. | es_ES |
dc.relation.references | Sharma VK, Zboril R, Varma RS. Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies. Accounts of Chemical Research. 2015;48(2):10. 97. Brand RA. Normos Program. Internat. Rep. Angewandte Physik: Univ. Duisburg; 1987. | es_ES |
dc.relation.references | Using High Purity Iron Electrodes: Optimization of Influencing Parameters on the Process and Investigating Its Stability International Journal of electrochemical Science. 2014;9(6):19. | es_ES |
dc.relation.references | Yang S-f, Doong R-a. Preparation of Potassium Ferrate for the Degradation of Tetracycline. Ferrates. ACS Symposium Series. 985: American Chemical Society; 2008. p. 404-19. | es_ES |
dc.relation.references | Lee Y, Yoon J, von Gunten U. Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water research. 2005;39(10):1946-53. | es_ES |
dc.relation.references | Lee DG, Gai H. Kinetics and mechanism of the oxidation of alcohols by ferrate ion. Canadian Journal of Chemistry. 1993;71(9):1394-400. | es_ES |
dc.relation.references | Schreyer JM, Ockerman LT. Stability of Ferrate(VI) Ion in Aqueous Solution. Analytical Chemistry. 1951;23(9):1312-4. | es_ES |
dc.relation.references | Wagner WF, Gump JR, Hart EN. Factors Affecting Stability of Aqueous Potassium Ferrate(VI) Solutions. Analytical Chemistry. 1952;24(9):1497-8. | es_ES |
dc.relation.references | (US-EPA) USEPA. SW-846 Method 5021a: Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods2014. | es_ES |
dc.relation.references | (US-EPA) USEPA. SW-846 Method 8021b: Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods2014 (rev. 3). | es_ES |
dc.relation.references | (US-EPA) USEPA. SW-846 Method 8260: Volatile Organic Compounds by Gas Chromatography-Mass Spectrometry (GC/MS). Test Methods for Evaluating Solid Waste, Physical/Chemical Methods2006. | es_ES |
dc.relation.references | Waite TD, Gilbert M. Oxidative Destruction of Phenol and Other Organic Water Residuals by Iron (VI) Ferrate. Journal (Water Pollution Control Federation). 1978;50(3):11. | es_ES |
dc.relation.references | Lee KJ, Lee Y, Yoon J, Kamala‐Kannan S, Park SM, Oh BT. Assessment of zero‐valent iron as a permeable reactive barrier for long‐term removal of arsenic compounds from synthetic water. Environmental Technology. 2009;30(13):1425-34. | es_ES |
dc.relation.references | ETI ETI. 2009 [Available from: www.eti.ca. | es_ES |
dc.relation.references | Thiruvenkatachari R, Vigneswaran S, Naidu R. Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry. 2008;14(2):145-56. | es_ES |
dc.relation.references | US-EPA OoRaD. An In Situ Permeable Reactive Barrier for the Treatment of Hexavalent Chromium and Trichloroethylene in Ground Water: Design and Installation. 1999. | es_ES |
dc.relation.references | Meggyes T, Simon F-G. Removal of organic and inorganic pollutants from groundwater using permeable reactive barriers – Part 2. Engineering of permeable reactive barriers. Land Contamination & Reclamation. 2000;8(3):175-87. | es_ES |
dc.relation.references | Hocking G, Wells SL, Ospina RI. Deep Reactive Barriers for remediation of VOCs and heavy metals. 2nd Int Conf On Remediation of Chlorinated and Recalcitrant Compounds,; Monterey, CA: GeoSierra LLC, Atlanta, GA, USA; 2000. | es_ES |
dc.relation.references | Roehl KE, Meggyes T, Simon FG, Stewart DI. Long-term Performance of Permeable Reactive Barriers. 2005;7:244. | es_ES |
dc.relation.references | Gavaskar AR. Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials. 1999;68(1):41-71. | es_ES |
dc.relation.references | Naidu R, Birke V. Permeable Reactive Barrier: Sustainable Groundwater Remediation. Environment AiTEit, editor: CRC Press - Taylor & Francis Group; 2014. | es_ES |
dc.relation.references | Phillips DH. Permeable reactive barriers: A sustainable technology for cleaning contaminated groundwater in developing countries. Desalination. 2009;248(1):352-9. | es_ES |
dc.relation.references | Gupta N, Fox TC. Hydrogeologic modeling for permeable reactive barriers. Journal of Hazardous Materials. 1999;68(1):19-39. | es_ES |
dc.relation.references | Heijde PKMvd, Elnawawy OA. Compilation of groundwater models. In: U.S. EPA RSKERL, Ada, OK, editor. 1993. | es_ES |
dc.relation.references | Ijoor GC. Modeling of a permeable reactive barrier: New Jersey Institute of Technology; 1999. | es_ES |
dc.relation.references | Craig JR, Rabideau AJ, Suribhatla R. Analytical expressions for the hydraulic design of continuous permeable reactive barriers. Advances in Water Resources. 2006;29(1):99-111. | es_ES |
dc.relation.references | Mumford KA, Rayner JL, Snape I, Stevens GW. Hydraulic performance of a permeable reactive barrier at Casey Station, Antarctica. Chemosphere. 2014;117(Supplement C):223-31. | es_ES |
dc.relation.references | Schipper LA, Barkle GF, Hadfield JC, Vojvodic-Vukovic M, Burgess CP. Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater. Journal of Contaminant Hydrology. 2004;69(3):263-79. | es_ES |
dc.relation.references | Wanner C, Zink S, Eggenberger U, Mäder U. Unraveling the partial failure of a permeable reactive barrier using a multi-tracer experiment and Cr isotope measurements. Applied Geochemistry. 2013;37(Supplement C):125-33. | es_ES |
dc.relation.references | Johnson RL, Thoms RB, O’Brien Johnson R, Krug T. Field Evidence for Flow Reduction through a Zero-Valent Iron Permeable Reactive Barrier. Ground Water Monitoring & Remediation. 2008;28(3):47-55. | es_ES |
dc.relation.references | Reddi L, Inyang H. Geoenvironmental Engineering: Principles and Applications: Marcel Dekker, Inc; 2000. | es_ES |
dc.relation.references | Bear J. Dynamics of Fluids in Porous Media. New York: Dover Publications, Inc.; 1988. 800 p. | es_ES |
dc.relation.references | Domenico PA, W. SF. Physical and Chemical Hydrogeology. 2nd etition ed: Wiley; 1997. 528 p. | es_ES |
dc.relation.references | Bureau EIPPC. Reference document on best available techniques in common waste water and waste gas treatment / management systems in the chemical sector2003. | es_ES |
dc.relation.references | Fetter CW BT, Kreamer D. Contaminant Hydrogeology: Waveland Press, Inc.; 2017 24/10/2017. | es_ES |
dc.relation.references | John C. Crittenden, R. Rhodes Trussell, David W. Hand, Kerry J. Howe, Tchobanoglous G. MWH’s Water Treatment: Principles and Design. Third Edition ed: John Wiley & Sons, Inc.; 2012. | es_ES |
dc.relation.references | Leyva Ramos R, Mendoza Barrón J, Guerrero Coronado R. Adsorción de hidrocarburos aromáticos en solución acuosa en carbón activado. Tecnología, Ciencia y Educación. 1987:31-5. | es_ES |
dc.relation.references | Asenjo NG, Álvarez P, Granda M, Blanco C, Santamaría R, Menéndez R. High performance activated carbon for benzene/toluene adsorption from industrial wastewater. Journal of Hazardous Materials. 2011;192(3):1525-32. | es_ES |
dc.relation.references | Worch E. Adsorption Technology in Water Treatment: Walter de Gruyter GmbH & Co. KG; 2012. 345 p. | es_ES |
dc.relation.references | Yorgun S, Yıldız D. Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. Journal of the Taiwan Institute of Chemical Engineers. 2015;53(Supplement C):122-31. | es_ES |
dc.relation.references | Chowdhury ZK, Summers RS, Westerhoff GP, Leto BJ, Nowack KO, Corwin CJ. Activated Carbon: Solutions for Improving Water Quality: American Water Works Association; 2013. | es_ES |
dc.relation.references | Kumar A, Jena HM. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results in Physics. 2016;6(Supplement C):651-8. | es_ES |
dc.relation.references | Huling SG, Ko S, Park S, Kan E. Persulfate oxidation of MTBE- and chloroform-spent granular activated carbon. Journal of Hazardous Materials. 2011;192(3):1484-90. | es_ES |
dc.relation.references | Liang SH, Kao CM, Kuo YC, Chen KF. Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater. Journal of Hazardous Materials. 2011;185(2):1162-8. | es_ES |
dc.relation.references | Fitts CR. 3 - Principles of Flow. In: Fitts CR, editor. Groundwater Science (Second Edition). Boston: Academic Press; 2013. p. 47-96. | es_ES |
dc.relation.references | Tien C. 3 -Representation, correlation, and prediction of single-component adsorption equilibrium data. Adsorption Calculations and Modelling. Boston: Butterworth- Heinemann; 1994. p. 15-41. | es_ES |
dc.relation.references | Shaw DJ. 5 - The solid–gas interface. In: Shaw DJ, editor. Introduction to Colloid and Surface Chemistry (Fourth Edition). Oxford: Butterworth-Heinemann; 1992. p. 115-50. | es_ES |
dc.relation.references | Carberry JJ. Ingeniería de las Reacciones Químicas y Catalíticas: Mc Graw Hill Inc.;1976. | es_ES |
dc.relation.references | Sontheimer H, Crittenden JC, RS. S. Activated carbon for water treatment. Second edition ed. Karlsruhe, Germany Universitat Karlsruhe; 1988. | es_ES |
dc.relation.references | Yaws C. Chemical Properties Handbook: Physical, Thermodynamics, Environmental Transport, Safety & Health Related Properties for Organic adn Inorganic Chemicals1999 | es_ES |
dc.relation.references | Warren L. McCabe , Julian Smith , Harriott P. Unit Operations of Chemical Engineering: McGraw-Hill; 2004. | es_ES |
dc.relation.references | Jørgensen SE. Chapter 6 Adsorption. Studies in Environmental Science. 5: Elsevier; 1979. p. 61-80. | es_ES |
dc.relation.references | Tarradellas J, Bitton G, Rossel D. Soil Ecotoxicology: CRC Press; 1996. p. 400. | es_ES |
dc.relation.references | Lesage G, Sperandio M, Tiruta-Barna L. Analysis and modelling of non-equilibrium sorption of aromatic micro-pollutants on GAC with a multi-compartment dynamic model. Chemical Engineering Journal. 2010;160(2):457-65. | es_ES |
dc.relation.references | Lyklema H. Preface to Volume II: Solid-Liquid Interfaces. In: Lyklema J, editor. Fundamentals of Interface and Colloid Science. 2: Academic Press; 1995. p. vii-ix. | es_ES |
dc.relation.references | Benjamin MM, Lawler DF. Water Quality Engineering: John Wiley & Sons, Inc.; 2013. | es_ES |
dc.relation.references | Speth TF, Miltner RJ. Technical note: adsorption capacity of GAC for synthetic organics. Journal - American Water Works Association. 1998;90(4):171-4. | es_ES |
dc.relation.references | Speth TF, Miltner RJ. Technical Note: Adsorption Capacity of GAC for Synthetic Organics. Journal - American Water Works Association. 1990;82(2):72-5. | es_ES |
dc.relation.references | Sudibandriyo M, Gozan M. Study of Hydrocarbon Adsorption from Waste water using expanded bed Activated Carbon. IEEE. 2004. | es_ES |
dc.relation.references | Hindarso H, Ismadji S, Wicaksana F, Mudjijati, Indraswati N. Adsorption of Benzene and Toluene from Aqueous Solution onto Granular Activated Carbon. Journal of Chemical & Engineering Data. 2001;46(4):788-91. | es_ES |
dc.relation.references | Canzano S, Capasso S, Natale DM, Erto A, Iovino P, Musmarra D. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption. Sustainability. 2014;6(8). | es_ES |
dc.relation.references | Canzano S, Capasso S, Natale DM, Erto A, Iovino P, Musmarra D. Remediation of Groundwater Polluted by Aromatic Compounds by Means of Adsorption. Sustainability. 2014;6(8). | es_ES |
dc.relation.references | California MRPo. Treatment Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water. ; 2000. Report No.: NWRI-99-06. | es_ES |
dc.relation.references | (US-EPA) USEPA. SW-846 Method 3511: Organic Compounds in Water by Microextraction. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods2014 (rev. 3). | es_ES |
dc.relation.references | (US-EPA) USEPA. SW-846 Method 8015c: Nonhalogenated Organics by Gas Chromatography. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods2007 (rev. 3). | es_ES |
dc.relation.references | Erto A, Lancia A, Bortone I, Di Nardo A, Di Natale M, Musmarra D. A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation. Journal of environmental management. 2011;92(1):23-30. | es_ES |
dc.relation.references | I. Bortone, S. Chianese, A. Di Nardo, M. Di Natale, A. Erto, Musmarra D. Groundwater Protection by Permeable Adsorbing Barriers at solid waste landfills. G. B. C. Cabral, Botelho BAE, editors: Nova Science Publishers, Inc.; 2012. | es_ES |
dc.relation.references | Agency USEP. Permeable Reactive Barrier Technologies for Contaminant Remediation. 1998. | es_ES |
dc.relation.references | Nardo AD, Bortone I, Natale MD, Erto A, Musmarra D. A Heuristic Procedure to Optimize the Design of a Permeable Reactive Barrier for In Situ Groundwater Remediation. Adsorption Science & Technology. 2014;32(2-3):125-40. | es_ES |
dc.relation.references | Levenspiel O. The Dispersion Model. In: Levenspiel O, editor. Tracer Technology: Modeling the Flow of Fluids. New York, NY: Springer New York; 2012. p. 47-70. | es_ES |
dc.relation.references | Crittenden JC, Hutzler NJ, Geyer DG, Oravitz JL, Friedman G. Transport of Organic Compounds With Saturated Groundwater Flow: Model Development and Parameter Sensitivity. Water Resources Research. 1986;22(3):271-84. | es_ES |
dc.relation.references | Levenspiel O. Chemical Reaction Engineering. Industrial & Engineering Chemistry Research. 1999;38(11):4140-3. | es_ES |
dc.relation.references | Ogata A, Banks RB. A solution of the differential equation of longitudinal dispersion in porous media.: Geological Survey; 1961. | es_ES |
dc.relation.references | Bear J. Hydraulics of Groundwater: McGraw-Hill; 1979. | es_ES |
dc.relation.references | Fetter CWJ. Applied Hydrogeology. 4th Edition ed: Pearson; 2000. 624 p. | es_ES |
dc.relation.references | Hayduk W, Laudie H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE Journal. 1974;20(3):611-5. | es_ES |
dc.relation.references | Xu M, Eckstein Y. Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Field Scale. Groundwater. 1995;33(6):905-8. | es_ES |
dc.relation.references | Walas S. Phase Equilibria in Chemical Engineering: Elsevier Science; 2013. | es_ES |
dc.relation.references | Perego C, Peratello S. Experimental methods in catalytic kinetics. Catalysis Today. 1999;52(2):133-45. | es_ES |
dc.relation.references | Arora M, Snape I, Stevens GW. Toluene sorption by granular activated carbon and its use in cold regions permeable reactive barrier: Fixed bed studies. Cold Regions Science and Technology. 2011;69(1):59-63. | es_ES |
dc.relation.references | Šimůnek JM, van Genuchten MT, Šejna M, Toride N, Leij FJ. The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. In: 71 I-T-, editor.: International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado; 1999. p. 32. | es_ES |
dc.relation.references | Cushman JH, Tartakovsky DM. The Handbook of Groundwater Engineering: CRCPress; 2016. | es_ES |
dc.relation.references | Toride N, Leij FJ, van Genuchten MT. The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Research Report No 137: Riverside, Cal.: USDA-ARS U.S. Salinity Laboratory; 1999. | es_ES |
dc.relation.references | Kreft JU PC, Wimpenny JW, van Loosdrecht MC. Individual-based modelling of biofilms. Microbiology. 2001;147(11):2897-912. | es_ES |
dc.relation.references | Myers AL, Prausnitz JM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11:121. | es_ES |
dc.relation.references | Crittenden JC, Luff P, Hand DW, Oravitz JL, Loper SW, Arl M. Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory. Environ Sci Technol. 1985;19:1037. | es_ES |
dc.relation.references | Benjamin MM. New Conceptualization and Solution Approach for the Ideal Adsorbed Solution Theory (IAST). Environmental Science & Technology. 2009;43(7):2530-6. | es_ES |
dc.relation.references | Benjamin MM. New Conceptualization and Solution Approach for the Ideal Adsorbed Solution Theory (IAST). Environmental Science & Technology. 2009;43(7):2530-6. | es_ES |
dc.relation.references | Hou X, Amais RS, Jones BT, Donati GL. Inductively Coupled Plasma Optical Emission Spectrometry. Encyclopedia of Analytical Chemistry: John Wiley & Sons, Ltd; 2006. | es_ES |
dc.relation.references | Orio O, López A, Herrero E, Perez C, Anunziata OA. Cromatografía en fase gaseosa: Cuadernos GEMINIS; 1985. | es_ES |
dc.relation.references | de Hoffmann E, Stroobant V. Mass Spectrometry: Principles and Applications. 3rd Edition ed: Wiley; 2007. | es_ES |
dc.relation.references | Pickering WF. Química Analítica Moderna: Editorial Reverté; 2010. 690 p. | es_ES |
dc.relation.references | Dedushenko SK, Perfiliev YD, Kulikov LA. Mössbauer spectroscopy and quality control in ferrate technology. Hyperfine Interactions. 2013;218(1):59-65. | es_ES |
dc.relation.references | Tsapin AI, Goldfeld MG, McDonald GD, Nealson KH, Moskovitz B, Solheid P, et al. Iron(VI): Hypothetical Candidate for the Martian Oxidant. Icarus. 2000;147(1):68-78. | es_ES |
dc.relation.references | Ramos C. Espectroscopía Mössbauer aplicada a la caracterizaciópn de ferratos. 2015. | es_ES |
dc.relation.references | Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society. 1938;60(2):309-19. | es_ES |
dc.contributor.coadvisor | Macaño, Héctor | |
dc.rights.use | No comercial sólo de uso académico. | es_ES |