LSTM recurrent neural network for energy demand forecasting

dc.creatorAlarcón, Rodrigo Germán
dc.creatorAlarcón, Martín Alejandro
dc.creatorGonzález, Alejandro H.
dc.creatorFerramosca, Antonio
dc.creator.orcid0000-0001-9936-1452es_ES
dc.creator.orcid0000-0002-3823-043Xes_ES
dc.creator.orcid0000-0001-9132-4577es_ES
dc.creator.orcid0000-0003-3935-9734es_ES
dc.date.accessioned2024-08-01T22:51:52Z
dc.date.available2024-08-01T22:51:52Z
dc.date.issued2023-05-16
dc.description.abstractAbstract—Recurrent Neural Networks (RNN) of the Long Short Term Memory (LSTM) type provide high accuracy in predicting sequential models in various application domains. As in most process control problems, their dynamics include non manipulated variables that need to be predicted. This paper proposes using an LSTM neural network for energy demand forecasting, which applies to an Economic Model Predictive Control (EMPC) as a forecasting tool. For the training, data are taken from a three-phase intelligent power quality analyser located at the National Technological University, Reconquista Regional Faculty (Santa Fe, Argentina). A recursive strategy is used to update the state of the neural network and forecast over different prediction horizons. The accuracy achieved in training the neural network is measured using the root mean square error (RMSE) metric. Experimental results show that the proposed LSTM neural network has excellent generalisation capability.es_ES
dc.description.affiliationFil: Alarcón, Rodrigo G. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Fil: Alarcón, Martín A. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina. Fil: González, Alejandro H. Universidad Nacional del Litoral; Argentina. Fil: Ferramosca, Antonio. Università degli Studi di Bergamo; Italia.es_ES
dc.formatpdfes_ES
dc.identifier.citation28◦ Congreso Argentino de Control Automático AADECA’23es_ES
dc.identifier.isbn978-987-46859-4-0
dc.identifier.urihttp://hdl.handle.net/20.500.12272/11218
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.rights.holderRodrigo G. Alarcónes_ES
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.useCC BY-NC (Autoría – No Comercial)es_ES
dc.subjectRecurrent neural network, Long short term memory, Forecasting, Energy demand, Economic model predic tive control.es_ES
dc.titleLSTM recurrent neural network for energy demand forecastinges_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.type.versionpublisherVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
AADECA-2023-2.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: