Modeling Turbulent Flows with LSTM Neural Network
dc.creator | Pasinato, Hugo D. | |
dc.creator | Moguilner Rhe, Nicolás F. | |
dc.date.accessioned | 2024-05-10T21:42:46Z | |
dc.date.available | 2024-05-10T21:42:46Z | |
dc.date.issued | 2024-04-24 | |
dc.description.abstract | In this study, we explore the application of an artificial recurrent neural network (RNN) called Long Short-Term Memory (LSTM) as an alternative to a turbulent Reynolds-Averaged Navier- Stokes (RANS) model. The LSTM models are utilized to predict the shear Reynolds stress in developed and developing turbulent channel flows. We conduct comparative analyses, comparing the LSTM results propagated through computational fluid dynamics (CFD) simulations with the outcomes from the κ − ϵ model and data acquired from direct numerical simulation (DNS). These analyses demonstrate a good performance of the LSTM approac | es_ES |
dc.description.affiliation | Pasinato, Hugo D. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina | es_ES |
dc.description.affiliation | Moguilner Rhe, Nicolás F. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina | es_ES |
dc.description.peerreviewed | Peer Reviewed | es_ES |
dc.format | plain | es_ES |
dc.identifier.doi | -doi | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/10758 | |
dc.language.iso | spa | es_ES |
dc.rights | openAccess | es_ES |
dc.rights.holder | Pasinato Hugo Darío | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.use | Creative Commons / Atribución- Sin Obra | es_ES |
dc.subject | LSTM | es_ES |
dc.subject | Turbulent Flows | es_ES |
dc.subject | Modelos Rans | es_ES |
dc.title | Modeling Turbulent Flows with LSTM Neural Network | es_ES |
dc.type | info:eu-repo/semantics/other | es_ES |
dc.type.version | acceptedVersion | es_ES |
Files
Original bundle
1 - 1 of 1
- Name:
- Modeling Turbulent Flows with LSTM Neural NetworkLSTMforRANS.pdf
- Size:
- 289.01 KB
- Format:
- Adobe Portable Document Format
- Description:
- PID UTN FRP PASINATO-MOGUILNER Descripción del proyecto
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: