A custom loss function approach for data-driven Economic Model Predictive Control

dc.creatorAlarcón, Rodrigo Germán
dc.creatorAlarcón, Martín Alejandro
dc.creatorGonzález, Alejandro H.
dc.creatorFerramosca, Antonio
dc.creator.orcid0000-0001-9936-1452
dc.creator.orcid0000-0002-3823-043x
dc.creator.orcid0000-0001-9132-4577
dc.creator.orcid0000-0003-3935-9734
dc.date.accessioned2025-12-16T18:16:44Z
dc.date.issued2025-11-27
dc.description.abstractAbstract: This paper proposes a new controller that takes advantage of the properties of the recurrent neural network of the long short-term memory (RNN-LSTM) to imitate the behavior of an economic model predictive control (economic MPC). The approach introduces specific knowledge of the benchmark controller optimization problem and modifies the loss function during the training stage of the RNN-LSTM. This method is easy to implement, and its effectiveness demonstrates itself in a practical application: the energy management system of a microgrid on a university campus. The results show that the modification of the loss function improves the accuracy of the proposed controller compared to the traditional training method.
dc.description.affiliationRodrigo Germán Alarcón Universidad Tecnológica Nacional, Facultad Regional Reconquista, Grupo de Investigación en Programación Electrónica y Control, Reconquista, Santa Fe, Argentina.
dc.description.affiliationMartín Alejandro Alarcón Universidad Tecnológica Nacional, Facultad Regional Reconquista, Grupo de Investigación en Programación Electrónica y Control, Reconquista, Santa Fe, Argentina.
dc.description.affiliationAlejandro H. González Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral, CONICET, Santa Fe, Argentina.
dc.description.affiliationAntonio Ferramosca Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy.
dc.description.peerreviewedPeer Reviewed
dc.formathtml
dc.identifier.doi10.1109/RPIC67987.2025.11260824
dc.identifier.urihttps://hdl.handle.net/20.500.12272/14357
dc.language.isoen
dc.publisherIEEE Xplore
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Argentinaen
dc.rights.holderRodrigo G. Alarcón, Martín G. Alarcón, Alejandro H. González, Antonio Ferramosca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rights.useLicencia Creative Commons / CC BY-NC (Autoría – No Comercial)
dc.subjecteconomic model predictive control
dc.subjectlong short-term menory networks
dc.subjectcustom loss function
dc.subjectcustomized training
dc.subjectmicrogrid
dc.titleA custom loss function approach for data-driven Economic Model Predictive Control
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
RPIC - A Custom Loss Function Approach for Data-Driven Economic Model Predictive Control.pdf
Size:
81.58 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: