Artificial neural networks for energy demand prediction in an economic MPC-Based energy management system
dc.creator | Alarcón, Rodrigo Germán | |
dc.creator | Alarcón, Martín Alejandro | |
dc.creator | González, Alejandro H. | |
dc.creator | Ferramosca, Antonio | |
dc.creator.orcid | 0000-0001-9936-1452 | |
dc.creator.orcid | 0000-0002-3823-043x | |
dc.creator.orcid | 0000-0001-9132-4577 | |
dc.creator.orcid | 0000-0003-3935-9734 | |
dc.date.accessioned | 2024-12-19T19:53:19Z | |
dc.date.issued | 2024-10-20 | |
dc.description.abstract | ABSTRACT Microgrids are a development trend and have attracted a lot of attention worldwide. The control system plays a crucial role in implementing these systems and, due to their complexity, artificial intelligence techniques represent some enabling technologies for their future development and success. In this paper, we propose a novel formulation of an economic model predictive control (economic MPC) applied to a microgrid designed for a faculty building with the inclusion of a predictive model to deal with the energy demand disturbance using a recurrent neural network of the long short-term memory (RNN-LSTM). First, we develop a framework to identify an RNN-LSTM using historical data registered by a smart three-phase power quality analyzer to provide feedforward power demand predictions. Next, we present an economic MPC formulation that includes the prediction model for the disturbance within the optimization problem to be solved by the MPC strategy. We carried out simulations with different scenarios of energy consumption, available resources, and simulation times to highlight the results obtained and analyze the performance of the energy management system. In all cases, we observed the correct operation of the proposed control scheme, complying at all times with the objectives and operational restrictions imposed on the system. | |
dc.description.affiliation | Fil: Alarcón, Rodrigo Germán. Universidad Tecnológica Nacional, Facultad Regional Reconquista, Grupo de Investigación en Programación Eficiente y Control, Argentina. | |
dc.description.affiliation | Fil: Alarcón, Martín Alejandro. Universidad Tecnológica Nacional, Facultad Regional Reconquista, Grupo de Investigación en Programación Eficiente y Control, Argentina. | |
dc.description.affiliation | Fil: González, Alejandro H. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Facultad de Ingeniería Química (FIQ), Santa Fe, Argentina. | |
dc.description.affiliation | Fil: Ferramosca, Antonio. Università degli studi di Bergamo, Italia. | |
dc.description.peerreviewed | Peer Reviewed | |
dc.format | ||
dc.identifier.doi | https://doi.org/10.1002/rnc.7671 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/11992 | |
dc.language.iso | en | |
dc.publisher | International Journal of Robust and Nonlinear Control | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-NoDerivs 2.5 Argentina | en |
dc.rights.holder | Rodrigo G. Alarcón, Martín G. Alarcón, Alejandro H. González, Antonio Ferramosca | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights.use | e Licencia Creative Commons / CC BY-NC (Autoría – No Comercial) | |
dc.subject | artificial neural networks | |
dc.subject | deep learning | |
dc.subject | disturbance prediction | |
dc.subject | economic model predictive control | |
dc.subject | long short-term memory | |
dc.subject | microgrid | |
dc.title | Artificial neural networks for energy demand prediction in an economic MPC-Based energy management system | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |
Files
Original bundle
1 - 1 of 1
- Name:
- Artificial Neural Networks for Energy Demand Prediction in an Economic MPC-Based Energy Management System-Abstrac.pdf
- Size:
- 148.57 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.63 KB
- Format:
- Item-specific license agreed upon to submission
- Description: