Artificial neural networks for energy demand prediction in an economic MPC-Based energy management system

dc.creatorAlarcón, Rodrigo Germán
dc.creatorAlarcón, Martín Alejandro
dc.creatorGonzález, Alejandro H.
dc.creatorFerramosca, Antonio
dc.creator.orcid0000-0001-9936-1452
dc.creator.orcid0000-0002-3823-043x
dc.creator.orcid0000-0001-9132-4577
dc.creator.orcid0000-0003-3935-9734
dc.date.accessioned2024-12-19T19:53:19Z
dc.date.issued2024-10-20
dc.description.abstractABSTRACT Microgrids are a development trend and have attracted a lot of attention worldwide. The control system plays a crucial role in implementing these systems and, due to their complexity, artificial intelligence techniques represent some enabling technologies for their future development and success. In this paper, we propose a novel formulation of an economic model predictive control (economic MPC) applied to a microgrid designed for a faculty building with the inclusion of a predictive model to deal with the energy demand disturbance using a recurrent neural network of the long short-term memory (RNN-LSTM). First, we develop a framework to identify an RNN-LSTM using historical data registered by a smart three-phase power quality analyzer to provide feedforward power demand predictions. Next, we present an economic MPC formulation that includes the prediction model for the disturbance within the optimization problem to be solved by the MPC strategy. We carried out simulations with different scenarios of energy consumption, available resources, and simulation times to highlight the results obtained and analyze the performance of the energy management system. In all cases, we observed the correct operation of the proposed control scheme, complying at all times with the objectives and operational restrictions imposed on the system.
dc.description.affiliationFil: Alarcón, Rodrigo Germán. Universidad Tecnológica Nacional, Facultad Regional Reconquista, Grupo de Investigación en Programación Eficiente y Control, Argentina.
dc.description.affiliationFil: Alarcón, Martín Alejandro. Universidad Tecnológica Nacional, Facultad Regional Reconquista, Grupo de Investigación en Programación Eficiente y Control, Argentina.
dc.description.affiliationFil: González, Alejandro H. Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Facultad de Ingeniería Química (FIQ), Santa Fe, Argentina.
dc.description.affiliationFil: Ferramosca, Antonio. Università degli studi di Bergamo, Italia.
dc.description.peerreviewedPeer Reviewed
dc.formatpdf
dc.identifier.doihttps://doi.org/10.1002/rnc.7671
dc.identifier.urihttp://hdl.handle.net/20.500.12272/11992
dc.language.isoen
dc.publisherInternational Journal of Robust and Nonlinear Control
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Argentinaen
dc.rights.holderRodrigo G. Alarcón, Martín G. Alarcón, Alejandro H. González, Antonio Ferramosca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rights.usee Licencia Creative Commons / CC BY-NC (Autoría – No Comercial)
dc.subjectartificial neural networks
dc.subjectdeep learning
dc.subjectdisturbance prediction
dc.subjecteconomic model predictive control
dc.subjectlong short-term memory
dc.subjectmicrogrid
dc.titleArtificial neural networks for energy demand prediction in an economic MPC-Based energy management system
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Artificial Neural Networks for Energy Demand Prediction in an Economic MPC-Based Energy Management System-Abstrac.pdf
Size:
148.57 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: