Grupo GUDA - Difusión Científica - Artículos de Revista

Permanent URI for this collectionhttp://48.217.138.120/handle/20.500.12272/6854

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Predicción de intenciones de conductores en rotondas no estructuradas mediante detección de vehículos con YOLO y análisis estadístico
    (Facultad de Ciencias Exactas y Naturales y Agrimensura (FACENA). Universidad Nacional del Nordeste (UNNE), 2024-12-02) Vázquez, Raimundo; Torres, Carlos; Marighetti, Jorge Omar; Gramajo, Sergio; Robledo Sanchez, Alberto Andrés
    Este estudio aborda la complejidad de predecir las intenciones de los conductores en intersecciones no estructuradas, como rotondas sin señales de tráfico sin marcaciones viales. Estas situaciones presentan desafíos únicos para los sistemas avanzados de asistencia al conductor (ADAS) y los vehículos autónomos. A diferencia de autopistas con carriles y semáforos claramente definidos, las rotondas no reguladas exigen un análisis más sofisticado del comportamiento vehicular. El enfoque propuesto utiliza el modelo de detección de objetos YOLO para detectar vehículos en una rotonda y focaliza la detección en áreas específicas como las entradas y salidas, en lugar de analizar toda la escena, lo que mejora la precisión y eficiencia. Además, se aplica un sistema de seguimiento basado en centroides para evitar contar el mismo vehículo varias veces. Se definen seis zonas en la rotonda: tres para predecir el comportamiento de los conductores y tres para contar los vehículos que realmente toman una salida específica. El sistema también mide el tiempo de congestión en la rotonda cuando los vehículos permanecen inmóviles durante un tiempo determinado, proporcionando información clave para la gestión del tráfico. Los resultados muestran una tasa de acierto significativa en la predicción de las trayectorias vehiculares, aunque existen casos en los que la predicción no coincide con los movimientos reales de los vehículos, lo que sugiere la necesidad de mejoras en la precisión del algoritmo. El estudio también sugiere que la integración futura de modelos de aprendizaje automático podría mejorar notablemente el rendimiento del sistema. Finalmente, el trabajo ofrece un enfoque novedoso para mejorar la seguridad y eficiencia del tráfico en rotondas, a pesar de las limitaciones encontradas, como el ángulo de captura de video.
  • Thumbnail Image
    Item
    Metodología integrada para la implementación y visualización de datos LiDAR en vehículos autónomos mediante ROS y Jetson Nano
    (Facultad de Ciencias Exactas y Naturales y Agrimensura (FACENA). Universidad Nacional del Nordeste (UNNE), 2024-12-02) Vázquez, Raimundo; Torres, Carlos; Marighetti, Jorge Omar; Gramajo, Sergio; Robledo Sanchez, Alberto Andrés
    Este trabajo presenta una metodología clara y replicable para el uso de sensores LiDAR en proyectos relacionados con vehículos autónomos y sistemas avanzados de asistencia al conductor (ADAS). Se enfoca en superar las limitaciones de herramientas propietarias, como las ofrecidas por los fabricantes de sensores, proporcionando una alternativa flexible y personalizable mediante el Sistema Operativo Robótico (ROS) y herramientas como RVIZ. Se detalla el uso del sensor SICK S3000 junto con el hardware Jetson Nano, destacando su capacidad para manejar librerías avanzadas como OpenCV, YOLO, y sick_scan. La metodología incluye pasos para la configuración, captura y almacenamiento de datos en archivos ROS Bag, así como su conversión a formatos más manejables como CSV, facilitando el análisis off-line y la reproducibilidad de experimentos. Por último, se presentan ejemplos prácticos de visualización de datos y resultados en un contexto vehicular, junto con propuestas de configuración eléctrica para asegurar el correcto funcionamiento del sensor y el hardware complementario. Este trabajo contribuye significativamente al avance en la integración y uso de sensores LiDAR, brindando herramientas accesibles para estudiantes e investigadores