FRCU - GIICIS: Grupo de Investigación en Inteligencia Computacional e Ingeniería de Software - Artículos
Permanent URI for this collectionhttp://48.217.138.120/handle/20.500.12272/4095
Browse
Item Hierarchical clustering-based framework for a posteriori exploration of pareto fronts : application on the bi-objective next release problem(Hector Florez, Universidad Distrital Francisco Jose de Caldas, Colombia., 2023-05-24) Casanova Pietroboni, Carlos Antonio; Schab, Esteban Alejandro; Prado, Lucas Martín; Rottoli, Giovani DaianWhen solving multi-objective combinatorial optimization problems using a search algorithm without a priori information, the result is a Pareto front. Selecting a solution from it is a laborious task if the number of solutions to be analyzed is large. This task would benefit from a systematic approach that facilitates the analysis, comparison and selection of a solution or a group of solutions based on the preferences of the decision makers. In the last decade, the research and development of algorithms for solving multi-objective combinatorial optimization problems has been growing steadily. In contrast, efforts in the a posteriori exploration of non-dominated solutions are still scarce.Item Multi-criteria and multi-expert requirement prioritization using fuzzy linguistic labels(ParadigmPlus, 2022-02-08) Rottoli, Giovani Daian; Casanova Pietroboni, Carlos AntonioRequirement prioritization in Software Engineering is the activity that helps to select and or-der for the requirements to be implemented in each software development process iteration. Thus, requirement prioritization assists the decision-making process during iteration management. This work presents a method for requirement prioritization that considers many experts’ opinions on multiple decision criteria provided using fuzzy linguistic labels, a tool that allows capturing the imprecision of each experts’ judgment. These opinions are then aggregated using the fuzzy ag-gregation operator MLIOWA considering different weights for each expert. Then, an order for the requirements is given considering the aggregated opinions and different weights for each evaluated dimension or criteria. The method proposed in this work has been implemented and demonstrated using a synthetic dataset. A statistical evaluation of the results obtained using different t-norms was also carried out.