Centro UTN QUITEX - Difusión Científica - Artículos de Revista
Permanent URI for this collectionhttp://48.217.138.120/handle/20.500.12272/3851
Browse
Search Results
Item Understanding the influence of alkali cations and halogen anions on the cooperativity of cyclic hydrogen-bonded rosettes in supramolecular stacks(2022-11-07) Petelski, Andre Nicolai; Fonseca Guerra, CéliaHydrogen-bonded supramolecular systems are known to obtain extra stabilization from the complexation with ions, like guanine quadruplex (GQ). They experience strong hydrogen bonds due to cooperative effects. To gain deeper understanding of the interplay between ions and hydrogen-bonding cooperativity, relativistic dispersion-cor rected density functional theory (DFT-D) computations were performed on triple layer hydrogen-bonded rosettes of ammeline interacting with alkali metal cations and halides. Our results show that when ions are placed between the stacks, the hydrogen bonds are weakened but, at the same time, the cooperativity is strengthened. This phenomenon can be traced back to the shrinkage of the cavity as the ions pull the monomers closer together and therefore the distance between the monomers becomes smaller. On one hand this results in a larger steric repulsion, but on the other hand, the donor-acceptor interactions are enhanced due to the larger overlap between the donating and accepting orbitals leading to more charge donation and therefore an enhanced electrostatic attraction.Item Impact of covalent modifications on the hydrogen bond strengths in diaminotriazine supramolecules(2022-04-14) Petelski, Andre Nicolai; Pamies, Silvana Carina; Márquez, María Josefina; Peruchena, Nélida María; Sosa, Gladis LauraMelamine (M) is a popular triamine triazine compound in the field of supramolecular materials. In this work, we have computationally investigated how substituents can be exploited to improve the binding strength of M supramolecules. Two types of covalent modifications were studied: the substitution of an H atom within an amine group NHR, and the replacement of the whole NH2 group (R=H, F, CH3 and COCH3). Through our dispersion-corrected density functional theory computations, we explain which covalent modification will show the best self-assembling capabilities, and why the binding energy is enhanced. Our charge density and molecular orbital analyses indicate that the best substituents are those that generate a charge accumulation on the endocyclic N atom, providing an improvement of the electrostatic attraction. At the same time the substituent assists the main N H···N hydrogen bonds by interacting with the amino group of the other monomer. We also show how the selected group notably boosts the strength of hexameric rosettes. This research, therefore, provides molecular tools for the rational design of emerging materials based on uneven hydrogen-bonded arrangements.