FRCU - GIECRRER: Grupo de Investigación en Economía Computacional de Regulación de Redes y Energías Renovables
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/777
Browse
Item Implementación de la metaheurística FEPSO GIST mediante procesamiento paralelo : aplicación al problema de balance de fases en sistemas de distribución en baja tensión(Universidad Nacional de Cuenca. Facultad de Ingeniería., 2014-10) Schweickardt, Gustavo Alejandro; Casanova Pietroboni, Carlos AntonioEl presente trabajo describe el diseño e implementación de la Metaheurística FEPSO GIST (Fuzzy Particle Swarm Optimization with Global-Individual Star Topology) bajo un paradigma de computación paralela, empleando la plataforma MPI (Message Passing Interface), y aplicada a la solución del problema de Balance de Cargas en Sistemas de Distribución de Energía Eléctrica en Baja Tensión (PBC SDEE BT). En primer lugar, se plantea el Problema PBC SDEE BT multiobjetivo, carente de solución por métodos de optimización clásica. En segundo lugar, se presenta el marco de trabajo sobre el cual las heurísticas poseen un amplio grado de aplicación, y donde la computación paralela se yergue como una aliada invaluable al intentar, al igual que los métodos heurísticos, acelerar la respuesta de algoritmos que requieren de un poder computacional superior al paradigma secuencial. Seguidamente, se describe el diseño del algoritmo FEPSO GIST, la alternativa elegida para su implementación en MPI, y los detalles a tener en cuenta para una mejor ejecución. Por último, Se presenta su aplicación en un PBC SDEE BT real.Item Modelo hiperheurístico y simulación para la optimización de la inyección de potencia desde micro generación en sistemas eléctricos de distribución de baja tensión(Universidad Católica Luis Amigó, 2019-06) Schweickardt, Gustavo AlejandroEl presente trabajo aborda los desarrollos requeridos para resolver el problema de optimizar la inyección de potencia proveniente de micro generadores en sistemas eléctricos de distribución de energía (SEDE) de baja tensión (BT), focalizándose en los paneles solares fotovoltaicos (MG FV). Para tal propósito, se toman como referencia los conceptos y desarrollos generales presentados en artículos previos del autor, y se detallan los mismos, orientándolos a dos hiperheurísticas basadas en razonamiento, con dominio en metaheurísticas variantes de PSO, Formas (X-FPSO) y Cardumen de Peces Artificiales (FAFS) multiobjetivo. Estas hiperheurísticas fueron referidas como HY CBR X-FPSO y HY CBR (XFPSO + FAFS) MPI, siendo la segunda la que mejora los resultados en comparación con la primera, resolviendo las dos limitaciones observadas en esta. Se describe también la paralelización del algoritmo hiperheurístico HY CBR (X-FPSO +FAFS) MPI, en las dos variantes descriptas, empleando la plataforma MPI. Finalmente, se presenta una simulación sobre un SEDE con MG FV BT real, mediante ambos algoritmos hiperheurísticos, comparando los resultados.Item Modelos hiperheurísticos basados en razonamiento con procesameinto paralelo y dominio en metaheurísticas X-PSO Y AFS multiobjetivo(2015-05) Schweickardt, Gustavo Alejandro; Casanova Pietroboni, Carlos AntonioEn este trabajo se presenta el desarrollo e implementación de una HiperHeurística Basada en Razonamiento, con dominio en MetaHeurísticas variantes de la Optimización Por Enjambre de Partículas, X-FPSO, y Cardumen de Peces Artificiales, FAFS, MultiObjetivo. Como aporte respecto de otras publicaciones en la línea de investigación que los autores han desarrollado, se obtiene un importante avance: la paralelización del algoritmo, reemplazando su modelo secuencial primigenio, empleando la plataforma denominada Interfaz de Paso de Mensajes, MPI, (Message Passing Interface). Son propuestas dos estrategias para la implementación del Modelo, sustentadas en la habilidad que las X-Formas del conjunto X-(FPSO-FAFS) exhiben para satisfacer, en cierta instancia de decisión, los cinco Principios de la Inteligencia de Grupo (PIG). La primera, determina el número óptimo de núcleos MPI, y asigna, a cada uno, una subpoblación de la población total, con la misma cantidad invariante de individuos. La Función de Selección, FS, opera identificando la X-Forma más apta. La segunda, asigna un núcleo y la mejor X-Forma conforme cada PIG,modificando, mediante la FS, el tamaño de las subpoblaciones. Se presenta una aplicación de ambas estrategias, en el Problema de Balance de Fases en un Sistema de Distribución Eléctrica de Baja Tensión, comparando los resultados obtenidos.Item Optimización de la inyección de potencia desde micro generación distribuida en sistemas eléctricos de distribución de baja tensión : desarrollos teóricos de un modelo hiperheurístico(Universidad Católica Luis Amigó, 2018-07-03) Schweickardt, Gustavo AlejandroEste artículo presenta los desarrollos teóricos de un Modelo HiperHeurístico para Optimizar la Inyección de Potencia proveniente de Micro-Generadores Distribuidos en Sistemas Eléctricos de Distribución de Energía (SEDE) en Baja Tensión (BT), focalizándose sobre los Paneles Solares Fotovoltaicos (MG FV). Implica una Optimización Combinatoria MultiObjetivo, en el que los Métodos Clásicos no producen buenas soluciones en el Dominio Determinístico, relativo a sus Variables de Control, y colapsan en el Dominio de Incertidumbres de Carácter no Estocástico asociadas a aquellas. Aquí, son descritos los conceptos generales de una estrategia bio-inspirada referida como HiperHeurística, con un Método de Aprendizaje Sustentado en Razonamiento, y cuyo dominio se compone de un Conjunto de MetaHeurísticas MultiObjetivo del tipo PSO incorporando una forma híbrida, AFS (Artificial Fish School) que exhibe características aptas para ser integrada, y permite resolver problemas de convergencia observados por el autor en trabajos previos. Adicionalmente, se introduce la paralelización del algoritmo, reemplazando su formulación primigeniamente secuencial, utilizando la plataforma conocida como MPI (Message Passing Interface).