FRLP - I+D+i - GRUPOS UTN
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1744
Browse
2 results
Search Results
Item Differential equation for the flow rate of discharging silos based on energy balance(2020-05) Darias, José Ramón; Madrid, Marcos A.; Pugnaloni, LuisSince the early work of Hagen in 1852 and Beverloo et al. in 1961, the flow rate of granular material discharging through a circular orifice from a silo has been described by means of dimensional analysis and experimental fits, and explained through the “free fall arch” model. Here, in contrast with the traditional approach, we derive a differential equation based on the energy balance of the system. This equation is consistent with the well known Beverloo rule thanks to a compensation of energy terms. Moreover, this new equation can be used to explore new conditions for silo discharges. In particular, we show how the effect of friction on the flow rate can be predicted. The theory is validated using discrete element method simulations.Item A differential equation for the flow rate during silo discharge Beyond the Beverloo rule(EPJ Web of Conferences, 2017) Madrid, Marcos A.; Darias, José Ramón; Pugnaloni, LuisWe present a differential equation for the flow rate of granular materials during the discharge of a silo. This is based in the energy balance of the variable mass system in contrast with the traditional derivations based on heuristic postulates such as the free fall arch. We show that this new equation is consistent with the well known Beverloo rule, providing an independent estimate for the universal Beverloo prefactor. We also find an analytic expression for the pressure under discharging conditions.