Facultad Regional Córdoba

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Controlled drug release system: cyclophosphamide delivery contained in LP-SBA-15 functionalized with terbutylamine.
    (Univesidsad Tecnológica Nacional., 2023) Cussa, jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Juárez , Juliana María
    Controlled drug administration systems can keep the level of drugs in specific locations in the organism with low toxicity and above the optimal level. We suggest the LP-SBA15 material as a auspicious new host for drug delivery systems because of its low toxicity high biocompatibility and in vivo biodegradability. LP-SBA-15 materials were synthesized and functionalized using 0-15-30% of tert-butylamine (TBA) and used as effective drug delivery systems. The anticancer drug Cyclophosphamide (CP) is an alkylating compound which is a phosphoramide derivative and is habitually used in autoimmune diseases. Reactive oxygen species production has been related to the mechanism of CP-induced cell death or tumor cell killing. The activated metabolites of CP are released in both healthy and tumor tissues and destroy the cellular DNA and proteins as well as mitochondrial and lysosomal membranes. CP was loaded into the nanomaterial of the transporters and characterized by XRD, FTIR, TGA, TEM and texture, determining the adsorption capacity and its release. The release of the drug was studied for each material by simulating the physiological conditions and submerging the composite, at 37 °C with constant stirring, in a HCl solution (0.1 M) for the first two hours and in Buffer solution pH = 7 the following hours to simulate the conditions of the organism. Release experiment were conducted to determine the requisite efficacy of treatment. The study was performed by UV-Vis spectrophotometry to evaluate the amount of CP released. The mechanism of drug release from the LP-SBA-15 matrix was evaluated by adjusting the experimental data, being the Ritger-Peppas. The promising results we obtained for the controlled release of the drug in a controlled manner using the new material, reaching a quick initial release rate and maintaining a constant rate at high moments, allow us to keep the concentration of the drug in the therapeutic efficacy range, applying it to a great extent to the treatment of diseases that require a rapid response. Lastly, it was suggested that the LP-SBA-15 nanomaterial functionalized with 15% TBA was the most desirable system due to they had adequate amounts of both drug loading and release.
  • Thumbnail Image
    Item
    HaP/LP-SBA15 Nanocomposite for efficient removal of fluoride from contaminated water.
    (Univesidsad Tecnológica Nacional., 2020) López, Claudia; Cussa, jorgelina; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Cussa, jorgelina
    Hydroxyapatite (HaP) composites and highly ordered large pore mesoporous silica, such as LP-SBA 15 (Large Pore-SBA-15), were developed, characterized by XRD, BET, FTIR, and HRTEM, applied to fluoride removal from contaminated water. The proposed procedure to prepare HaP/LP-SBA-15 was successful, which acts as supports to anchor the HaP crystals, in nanometer-scale (<12 nm), with higher fluoride retention from contaminated water. The free OH- groups of HaP nanocrystals, inside the host, permitted fluoride retention with high capacity. The fluoride holding activity was over 3 orders of magnitude higher than pure HaP.
  • Thumbnail Image
    Item
    Experimental desing optimization of the ods of DBT using V2O5 supported on GA-SBA-15.
    (Univesidsad Tecnológica Nacional, 2017) Rivoira, Lorena Paola; Cussa, jorgelina; Martínez , María Laura; Beltramone, Andrea Raquel; Martínez , María; Cussa, jorgelina
    Experiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the catalyst/substrate ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with Ga/Si and V/Si ratios of 1/15 and 1/25, respectively. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support.
  • Thumbnail Image
    Item
    LP-SBA-15/Ketorolac Nanocomposite: Development, Characterization, and Mathematical Modeling of Controlled Keto Release.
    (Univesidsad Tecnológica Nacional, 2023) Cussa, jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata, Oscar Alfredo
    Drug-controlled release systems can keep the level of drugs in precise doses in the body above the optimal level and with low toxicity. We propose the nanomaterial LP-SBA-15 as an attractive new host for drug delivery systems due to its high biocompatibility, in vivo biodegradability, and low toxicity. LP-SBA-15/Ketorolac was prepared and characterized by XRD, FTIR, UV-Vis DRS, TEM, and texture analysis, determining the adsorption capacity and its release and achieving the required therapeutic efficacy. The host shows the ordered mesoporous nanochannels with a diameter of 11-12 nm, maintaining the structure with the incorporation of Keto. The mechanism of drug release from the LP-SBA-15 host was evaluated. Different mathematical models were used to adjust the experimental data, the Ritger-Peppas model followed by the Weibull model the best ones. The promising results we obtained for the release of the drug thoroughly using the new material, reaching a rapid initial release rate, and maintaining a constant rate afterward, allow us to maintain the concentration of the drug in the therapeutic efficacy range, applying it largely to the treatment of diseases that require a rapid response.