Facultad Regional Córdoba
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94
Browse
3 results
Search Results
Item Data agumentation para la clasificación automática de la calidad vocal(Universidad Tecnológica Nacional Regional Córdoba., 2020) García , Mario Alejandro; Destefanis , EduardoSe presenta el estado del plan de tesis “Valoración de la calidad vocal a través de deep scattering spectrum y aprendizaje automático” y se plantean tres transformaciones para incrementar la cantidad de datos de entrenamiento y reducir el sobreajuste. Estas transformaciones realizan un desplazamiento en frecuencia de los datos (audios), una segmentación por tiempo y la inversión del orden temporal (flipping). Como resultado, se obtiene un juego de datos 18 veces mayor al original. Se ejecuta un experimento que consta del el entrenamiento de una red neuronal profunda para evaluar el rendimiento con los datos aumentados. Se concluye que las transformaciones propuestas disminuyen el sobreajuste, mejoran el error de clasificación y se pueden utilizar en el ámbito de este plan de tesis, clasificación de la calidad vocal a partir de audios de vocales sostenidasItem Clasificación automática de la calidad vocal(edUTecNe, 2019) García , Mario Alejandro; Destefanis , EduardoSe presenta un enfoque para la construcción de un clasificador extremoaextremo de la calidad vocal en escala GRBAS basado en redes neuronales profundas. En base a este enfoque se muestran tres redes neuronales. Las redes presentadas calculan la transformada de Fourier de término reducido (STFT), el cepstrum y shimmer de una señal de audio. Las redes neuronales que calculan la STFT y shimmer se logran entrenar correctamente, mientras que la que calcula el cepstrum no. Para este último caso, se plantea una solución alternativa al cepstrum, la autocovariance, que sí se puede entrenar. Se concluye que las redes neuronales desarrolladas son compatibles con el enfoque planteado porque permiten que el gradiente del error se propague hacia atrásItem Extracción de Características en Audio con Redes Neuronales Convolucionales.(Universidad Tecnológica Nacional Regional Córdoba., 2019) García , Mario Alejandro; Rosset , Ana Lorena; Destefanis , EduardoLa valoración de la calidad vocal mediante el análisis audio-perceptual es parte de la rutina clínica de evaluación de pacientes con trastornos de la voz. La debilidad de este método reside en la subjetividad y en la necesidad de que sea realizada por oyentes experimentados. Este proyecto tiene como objetivo la realización de una clasificación automática de la calidad vocal, valuada en la escala GRBAS, a través de características extraídas del análisis acústico de la señal y técnicas de aprendizaje automático. Particularmente, en este trabajo se muestran los resultados del diseño de las capas de extracción de características de una red neuronal profunda orientada a la clasificación de la calidad vocal.
