Clasificación automática de la calidad vocal
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
edUTecNe
Abstract
Se presenta un enfoque para la construcción de un clasificador extremoaextremo de la calidad vocal en escala
GRBAS basado en redes neuronales profundas. En base a este enfoque se muestran tres redes neuronales. Las redes
presentadas calculan la transformada de Fourier de término reducido (STFT), el cepstrum y shimmer de una señal
de audio. Las redes neuronales que calculan la STFT y shimmer se logran entrenar correctamente, mientras que la
que calcula el cepstrum no. Para este último caso, se plantea una solución alternativa al cepstrum, la autocovariance,
que sí se puede entrenar. Se concluye que las redes neuronales desarrolladas son compatibles con el enfoque
planteado porque permiten que el gradiente del error se propague hacia atrás
In order to classify the vocal quality on GRBAS scale, an approach of endtoend neural network design is presented. Based on this approach, three neural networks are shown. These neural networks calculate the short term Fourier transform (STFT), cepstrum and shimmer of an audio signal. The training of the networks that calculate STFT and shimmer was successful. The network that calculates the cepstrum could not be trained, but an alternative model that calculates the autocovariance could. It is concluded that the developed neural networks are compatible with the proposed approach. This is because they allow the er
In order to classify the vocal quality on GRBAS scale, an approach of endtoend neural network design is presented. Based on this approach, three neural networks are shown. These neural networks calculate the short term Fourier transform (STFT), cepstrum and shimmer of an audio signal. The training of the networks that calculate STFT and shimmer was successful. The network that calculates the cepstrum could not be trained, but an alternative model that calculates the autocovariance could. It is concluded that the developed neural networks are compatible with the proposed approach. This is because they allow the er
Description
Keywords
Aprendizaje profundo, Redes neuronales artificiales, Calidad vocal
Citation
Jornada de Intercambio y Difusión de los Resultados de Investigaciones de los Doctorados en Ingeniería / coordinación general de Marcelo Martín Marciszack ; dirigido por Oscar Alfredo Anunziata... [et al.]. - 1a ed . - Ciudad Autónoma de Buenos Aires : edUTecNe, 2019.
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess

