Facultad Regional Córdoba
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/94
Browse
3 results
Search Results
Item Nanomateriales sintetizados con Al y B con variación del carácter ácido(2017) Vaschetto, Eliana; Gómez, Candelaria; Sicardi, Melina; Dinamarca, Robinson; Pecchi, Gina; Casuscelli, s; Eimer, Griselda AlejandraUno de los campos que más contribuirá a los desarrollos científicos y tecnológicos a lo largo del siglo XXI es la nanotecnología. Dentro de esta área, los materiales mesoporosos presentan la capacidad de ensamblar y organizar componentes inorgánicos, orgánicos e incluso biológicos en un material único. Estas características representan una dirección interesante para el desarrollo de materiales innovadores que puedan presentar una amplia gama de nuevas propiedades. Los materiales mesoporosos son potenciales candidatos para una gran variedad de aplicaciones [1-3]; particularmente, el arreglo hexagonal MCM-41 ofrece únicas oportunidades para ser usados como “estructuras soportes” permitiendo la preparación de nuevos materiales [4-7]. Si bien los MCM-41 silíceos cuando se encuentran puros tienen limitadas aplicaciones, la sustitución isomórfica del Si con distintos heteroátomos ha permitido que estas nanoestructuras presenten importantes actividades en diversas reacciones de interés. En este contexto la estructura MCM-41 modificada con heteroátomos permite alcanzar una alta dispersión de las especies activas [8] y además adquirir carácter ácido de fuerza variable dependiendo de la fuente del metal utilizado y del método de síntesis. De esta manera, propiedades únicas, que no se dan en sistemas catalíticos normales, pueden ser observadas en estas estructuras. En el presente trabajo se sintetizaron y caracterizaron catalizadores mesoestructurados por vía convencional y materiales mesoporosos a partir de precursores zeolíticos. En primer lugar se obtuvieron materiales sintetizados por “vía convencional” modificados con Aluminio y Boro mediante incorporación directa del heteroátomo en el gel de síntesis. Se lograron estructuras del tipo Al-MCM-41[9] y B-MCM-41[10], con un arreglo hexagonal de canales unidimensionales altamente ordenado, las cuales presentaron elevados valores de área específica y alta regularidad estructural evidenciada por TEM (Fig. 3:A-B) y DRX. El procedimiento de síntesis empleado permitió la incorporación del heteroátomo en la red evidenciada por IR-TF. Esta incorporación condujo a la formación de silanoles nido en sitios de defectos estructurales, evidenciada por IR-TF [9,10]. Estudios deadsorción-desorción de piridina seguidos por IR-TF permitieron identificar una acidez de Brønsted muy débil para el caso de los materiales con Al y una acidez moderada para los materiales con B, asociada a estos silanoles nido. También se sintetizaron materiales mesoporosos “vía precursores zeolíticos”, se demostró que el tratamiento hidrotérmico del gel final favoreció la formación de dominios zeolíticos. Además, se comprobó que los dominios zeolíticos originan una mayor fuerza ácida asociada a los hidroxilos de los silanoles nido (corroborada por adsorción-desorción de piridina seguida por IR-TF). Por TEM se observa una mesoporosidad menos definida sumada a la presencia de cristales típicos de estructuras zeolíticas. Comparando los materiales, se encontró que la proporción de silanoles nidos aumenta en el orden Al-MCM-41>B-MCM-41>Al-MCM a partir de precursores, resultando en un aumento de defectos estructurales, lo que indicaría además la mayor proporción de sitios ácidos en ese mismo orden.Finalmente se analizaron las propiedades estructurales y la naturaleza, origen, proporción y fuerza de los sitios ácidos generados en las distintas estructuras. Se comprobó que la acidez de los distintos nanomateriales fue de carácter débil para los Al-MCM-41, si bien estos presentaban la mayor proporción, moderada para los B-MCM-41 y fuerte para los sintetizados con precursores zeolíticos, evidenciado por adsorción-desorción de piridina seguida por IR-TF. De esta manera se pudieron generar materiales con sitios de fuerza ácida variable como potenciales catalizadores para procesos catalíticos que requieran distintos grados de acidez.Item Catalizadores en base a hierro soportado en nanotubos de Al2O3 para la fotodegradación de atenolol(2018) Lerici, Laura; Leal Marchena, Candelaria; Córdoba, Agostina; Varela López, Claudio; Campos Figueroa, CristianLa contaminación debida a residuos farmacológicos y cosméticos es un fenómeno cuyos efectos sanitarios y ambientales aún no son lo suficientemente conocidos. Este grupo de “contaminantes emergentes”, comprende a los productos farmacéuticos y del cuidado personal, esteroides, surfactantes, pesticidas y colorantes, entre otros. Su descarga y permanencia en el medioambiente genera una creciente preocupación debido a los posibles riesgos para la salud de los seres humanos y los efectos nocivos sobre los sistemas ecológicos. Se sintetizaron y caracterizaron nanotubos de alúmina impregnados con 2, 6 y 10 % de hierro, para ser empleados en la degradación fotocatalítica del Atenolol (ATN). Por DRX se verificaron las señales caracteristics de la γ-Al2O3. El área superficial disminuyó con el aumento del contenido hierro oscilando entre 87 y 116 m 2 /g.Este efecto es atribuido al bloqueo que produce la agregación de la fase activa sobre la superficie interna del nanotubo.La presencia de hierro fue confirmada por Adsorción Atómica, obteniéndose porcentajes similares a los teóricos. Además, por TEM, se confirmó la estructura tipo nanotubo del soporte con una longitud promedio de 81 ±5 nm. Los materiales fueron evaluados catalíticamente en la degradación del ATN obteniendo porcentajes de degradación deL 72 %.Item Fragmentación de glifosato en agua mediante oxidación catalítica con aire bajo condiciones ambiente(2019) Vaschetto, Eliana; Elías, Verónica; Casuscelli, Sandra; Eimer, Griselda AlejandraUno de los fosfonatos más importantes que es ampliamente utilizado en todo el mundo es la N-fosfonometilglicina (C3H8NO5P), conocida como glifosato. Éste es un herbicida de amplio espectro, utilizado para eliminar las malezas que compiten con los cultivos comerciales. En Argentina, el uso de herbicidas a base de glifosato aumentó dramáticamente desde la introducción de cultivos resistentes a este herbicida, como la soja transgénica y el maíz resistente. La gran solubilidad en agua de estas sustancias hace que, cuando se aplican en el suelo, se puedan difundir a aguas superficiales o subterráneas generando una gran contaminación. En este contexto, los procesos avanzados de oxidación se proponen como una alternativa de degradación muy prometedora para este tipo de compuestos en medio acuoso. Los procesos de oxidación húmeda con aire u O2 tienen potencial para degradar contaminantes tóxicos orgánicos y/o refractarios, pero a altas temperaturas (~ 180-350 °C) y presiones (~ 20-200 atm). Se ha demostrado que la adición de un catalizador sólido al sistema puede promover la formación de radicales en la superficie, acelerar la velocidad de reacción y mejorar la eficiencia, reduciendo drásticamente la severidad de las condiciones de operación y por lo tanto los altos costos del proceso. Así, los procesos de adsorción, fotodegradación y biodegradación de los fosfonatos, que utilizan catalizadores modificados con metales favorecen la formación de complejos mejorando su eficiencia. En este contexto, los silicatos mesoporosos como SBA-15 aparecen como soportes catalíticos muy prometedores debido a su estructura porosa uniforme, alta área específica y la posibilidad de modificar químicamente su superficie con funciones específicas. En este trabajo se desarrollaron sólidos mesoestructurados modificados con diversos contenidos de hierro para degradar eficientemente soluciones acuosas de glifosato mediante oxidación húmeda catalítica, bajo condiciones de presión atmosférica y temperatura ambiente. Se lograron degradaciones del orden del 80%.