FRSF - INVESTIGACIÓN Y PRODUCCIÓN CIENTÍFICA

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/534

Encontrará los objetos que son resultados de las investigaciones

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling
    (International Communications in Heat and Mass Transfer, 2025-04) Dittler, Ramiro A.; Demarchi, María Cecilia; Álvarez-Hostos, Juan C.; Albanesi, Alejandro E.; Tourn, Benjamín A.
    Phase change materials (PCMs) represent a promising solution for thermal energy storage (TES) since they can store and release energy in the form of latent heat during solid↔liquid transitions. Nevertheless, accurately simulating the thermal behavior of PCMs remains challenging due to the non-linearities concerning latent heat effects and enthalpy hysteresis. This work introduces a stable and robust procedure based on the finite element method (FEM) under a mixed enthalpy–temperature formulation to address such non-linearities, which enables the numerical solutions using derivative-based algorithms such as the Newton–Raphson (NR) method. The static hysteresis model (SHM) is implemented in the FEM-based formulation via a regularization of the liquid fraction function in response to the sign of the temperature rate. This novel approach ensures a continuous and smooth heating↔cooling transition while retaining the SHM energy-conservative features to properly solve its non-linearities. The method is validated through a one-dimensional benchmark problem, demonstrating high performance and physical fidelity for both complete and partial phase changes. It achieves second-order convergence rates, ensures numerical stability even for large time steps, and maintains accuracy under diverse thermal boundary conditions. Finally, the method is extended to two-dimensional problems, highlighting its robustness and scalability for practical applications in TES systems.
  • Item
    A shot in the dark : the current state of PCM hysteresis modelling in building energy simulation software
    (2025-02-16) Zhilyaev, Dmitry; Albanesi, Alejandro E.; Demarchi, María Cecilia; Fachinotti, Víctor D.; Bakker, Hans L. M.; Jonkers, Henk M.
    Phase change materials (PCM) are receiving an ever-growing attention as a promising construction material for improving building energy performance through thermal storage and peak load shifting. The analysis of PCM performance and decision-making related to PCM implementation in building envelope often rely on building energy simulation software such as EnergyPlus – a de-facto standard in the academic world and the industry. For a precise modelling of the dynamic PCM behaviour it is essential to correctly account for PCM hysteresis. This work provides an in-depth analysis of four publicly available EnergyPlus-based hysteresis models and identifies the existing limitations for each of them. Furthermore, it explores the effects of PCM model selection on decision-making using the example of novel PCM-embedded material development. The results of this study show that the current built-in hysteresis model in EnergyPlus is not implemented correctly, and none of the other analysed models is completely free of limitations. Moreover, this work draws attention to the existing contradictions between different PCM modelling approaches, highlighting the critical impact the selection of a PCM model has on PCM-related decision-making. We conclude that while the existing hysteresis models in EnergyPlus are operable – albeit with great caution – they are not yet at the stage where they could be used as a reliable decision-making support tool. Practical real-world integration of PCM in building envelopes is hardly possible without having dependable modelling tools to back it up, and the development of such tools requires far more attention than it is given at the moment.