FRSF - INVESTIGACIÓN Y PRODUCCIÓN CIENTÍFICA
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/534
Encontrará los objetos que son resultados de las investigaciones
Browse
2 results
Search Results
Item Metamodel-based formalization of DEVS atomic models(Simulation, 2021-09-14) Blas, María Julia; Gonnet, SilvioThe Discrete-Event System Specification (DEVS) formalism is a modeling formalism based on systems theory that provides a general methodology for hierarchical construction of reusable models in a modular way. When concrete DEVS models are developed using programming languages, it is difficult to ensure they conform to their formal model. Hence, building an implementation of formal models in a way that ensures DEVS formalism correctness is not easy. In this paper, we improve the interplay of abstraction (i.e., formal specification) and concreteness (i.e., programming code implementation) in advancing the theory and practice of DEVS using a specific-designed metamodel. The main contribution is a novel conceptualization of classic DEVS with ports founded on existing approaches but, that also includes new improved elements related to the definition of atomic models. That is, our metamodel includes all the concepts and relationships needed to define the formal specification of DEVS atomic models. This allows us to define instances of our conceptualization that comply with the DEVS formal specification. To instantiate our metamodel, we propose a computer-aided environment that has been developed using the Eclipse Modeling Project. As an example, we show how our metamodel can be used to define the classic “switch” model. As a conclusion, we discuss how the final metamodel can be used to support interoperability with DEVS simulation tools.Item Mapping RDEVSNL-based Definitions of Constrained Network Models to Routed DEVS Simulation Models(2024-03-27) Espertino, Clarisa; Blas, María Julia; Gonnet, SilvioThe Routed DEVS (RDEVS) formalism has been introduced recently to provide a reasonable formalization for the simulation of routing processes over Discrete Event System Specification (DEVS) models. Due to its novelty, new software tools are required to improve the Modeling and Simulation (MS) tasks related to the RDEVS formalism. This paper presents the mapping between constrained network models obtained from textual specifications of routing processes and RDEVS simulation models implemented in Java. RDEVSNL contextfree grammar (previously defined) is used to support the textual specification of a routing process as a constrained network model. Such grammar is based on a metamodel that defines the syntactical elements. This metamodel is used in this paper as a middleware that allows mapping constrained network model concepts with RDEVS simulation models. From such a constrained network model template, RDEVS Java implementations are obtained. The proposal is part of a workinprogress intended to develop MS software tools for the RDEVS formalism using wellknown abstractions to get the computational models through conceptual mapping. Using these tools, modelers can specify simulation models without needing to codify any routing implementation. The main benefits are i) reduction of implementation times and ii) satisfactory simulation model correctness regarding the RDEVS formalism.