FRSF - INVESTIGACIÓN Y PRODUCCIÓN CIENTÍFICA
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/534
Encontrará los objetos que son resultados de las investigaciones
Browse
3 results
Search Results
Item Estrategia de control basada en modelo para la producción de caucho acrilonitrilo-butadieno (NBR) de alto contenido en acrilonitrilo(XL MECOM, 2024) Sanseverinatti, Carlos Ignacio; Clementi, Luis Alberto; Vega, Jorge RubénEl caucho Acrilonitrilo-Butadieno de alto contenido de A (NBR por sus siglas en inglés: nitrile-butadiene rubber) se obtiene generalmente por copolimerización en emulsión de acrilonitrilo (A) y butadieno (B). La producción se realiza operando por encima del “punto azeotrópico”, donde el proceso puede inestabilizarse, dificultando la uniformidad del producto. La limitación para medir en línea la composición del copolímero restringe estrategias de lazo cerrado para estabilizar el proceso. En este trabajo se propone una estrategia de control en lazo cerrado que ajusta la composición del copolímero operando por encima del punto azeotrópico. A partir de un modelo de primeros principios, se implementa un sensor inferencial basado en redes neuronales recurrentes para estimar en línea la composición y cerrar el lazo de control mediante la dosificación de B durante el proceso. Los resultados indican un desempeño aceptable de la metodología de control propuesta, asegurando condiciones estables y una composición uniforme, incluso con errores significativos de modelado.Item Autocodificador recurrente para detectar fallas en un tren de reactores de polimerización(VII ARGENCON, 2024) Perdomo, Mariano Miguel; Clementi, Luis Alberto; Vega, Jorge RubénLa tarea de detectar, identificar y diagnosticar fallas en procesos industriales es de vital importancia para evitar un control deficiente del proceso, desperdicios de materia prima, pérdidas económicas por problemas de calidad en el producto final, etc. En consecuencia, la detección temprana y el diagnóstico preciso de las fallas resultan cruciales para reencausar el proceso y minimizar el impacto de las mismas. En este trabajo se desarrolla un módulo de detección de fallas, que incluye una interpretación de las fallas para facilitar su identificación y diagnóstico. El módulo se desarrolla en particular para un proceso de producción de látex para caucho estireno-butadieno, obtenido mediante un proceso continuo, el cual es susceptible de sufrir una amplia diversidad de fallas de distintas características. La metodología propuesta requiere para el ajuste del modelo únicamente datos del proceso en estado normal de operación, evitando así la compleja tarea de obtener un conjunto de datos representativo de todas las posibles fallas del proceso. Al tratarse de un proceso complejo, dinámico, no lineal y con muchas variables medidas, se adopta una metodología basada en autocodificadores recurrentes. Los resultados muestran en general un desempeño aceptable del modelo obtenido. Aquellas fallas que difieren significativamente de la distribución de probabilidades del estado normal de operación de la planta son detectadas eficazmente. Por otra parte, en algunos casos se observa un retardo u omisión temporal en la detección de las fallas. Esto se atribuye a la pequeña magnitud de algunas fallas, las cuales no se diferencian significativamente respecto a un estado normal de operación.Item Estimación de variable de calidad en un tren de reactores continuo utilizando soft-sensors basados en redes neuronales recurrentes(XX RPIC, 2023) Perdomo, Mariano Miguel; Clementi, Luis Alberto; Vega, Jorge RubénLa producción industrial de caucho SBR (Styrene-Butadiene Rubber) utiliza un tren de reactores tanque agitados continuos para la obtención de un látex. En esa etapa, es importante contar con estimaciones en tiempo real de algunas variables en el último reactor del tren, a efectos de lograr productos de calidad con buen nivel de producción. Los soft sensors (SS) son una alternativa adecuada para cumplir con esta tarea, en comparación con las estimaciones típicamente brindadas por laboratorios analíticos y analizadores en línea. El proceso incluye dinámicas complejas y múltiples modos de operación, resultando necesario el uso de SS capaces de capturar esas características. En este trabajo, se propone el desarrollo de un SS basado en redes neuronales recurrentes para estimar la conversión másica del látex a la salida del tren de reactores. La selección de la ventana temporal necesaria para efectuar las estimaciones se basa en un análisis de correlaciones cruzadas y una búsqueda por grilla. Por otra parte, el modelo que conformará al SS se selecciona a través de una exploración de distintas arquitecturas y sus espacios de hiperparámetros. Los resultados de simulación muestran que la adopción de una red neuronal recurrente basada en GRU (Gated Recurrent Unit) y una ventana temporal de 800 minutos exhibe el mejor desempeño para estimar la variable de interés.