FRCU - GIICIS: Grupo de Investigación en Inteligencia Computacional e Ingeniería de Software

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/4094

Browse

Search Results

Now showing 1 - 10 of 13
  • Item
    Graph representations for reinforcement learning
    (Universidad Nacional de La Plata. Facultad de Informática., 2024-04) Schab, Esteban Alejandro; Casanova Pietroboni, Carlos Antonio; Piccoli, María Fabiana
    Graph analysis is becoming increasingly important due to the expressive power of graph models and the efficient algorithms available for processing them. Reinforcement Learning is one domain that could ben- efit from advancements in graph analysis, given that a learning agent may be integrated into an environ- ment that can be represented as a graph. Nevertheless, the structural irregularity of graphs and the lack of prior labels make it difficult to integrate such a model into modern Reinforcement Learning frameworks that rely on artificial neural networks. Graph embedding enables the learning of low-dimensional vector representations that are more suited for machine learning algorithms, while retaining essential graph features. This paper presents a framework for evaluating graph embedding algorithms and their ability to preserve the structure and relevant features of graphs by means of an internal validation metric, without resorting to subsequent tasks that require labels for training. Based on this framework, three defined algorithms that meet the necessary requirements for solving a specific problem of Reinforcement Learningin graphs are selected, analyzed, and compared. These algorithms are Graph2Vec, GL2Vec, and Wavelet Characteristics, with the latter two demonstrating superior performance.
  • Thumbnail Image
    Item
    Aplicación de inteligencia computacional y computación de alto desempeño en el desarrollo de un modelo de predicción de las condiciones predisponentes al quemado del arroz (Pyricularia oryzae)
    (Red de Universidades con Carreras en Informática, 2023-04-13) Asselborn, Miriam; Escalante, Julián; Lopresti, Olga Mariela; Miranda, Natalia Carolina; Schab, Esteban Alejandro; Cedaro, Karina Elizabeth; Fontanini, Pablo; Martínez, Malvina; Casanova Pietroboni, Carlos Antonio; Pedraza, María Virginia; Piccoli, María Fabiana
    Un sistema complejo o crítico con toma de decisiones se caracteriza por la imposibilidad de reproducir para su estudio un escenario sin consecuencias reales, o cuando su resolución implica gran cantidad de recursos para obtener resultados en un tiempo prudencial. La complejidad puede darse por las características del problema o por la cantidad de datos con los que se trabaja. Tomar decisiones en estos contextos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. En este trabajo proponemos una línea de investigación enfocada en analíticas, principalmente las prescriptivas, capaces de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas: corto y mediano plazo, decisiones estratégicas: largo plazo) para lograr un objetivo deseado. A esta línea se suman investigaciones en Inteligencia Computacional y Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.
  • Thumbnail Image
    Item
    Hierarchical clustering-based framework for a posteriori exploration of pareto fronts : application on the bi-objective next release problem
    (Hector Florez, Universidad Distrital Francisco Jose de Caldas, Colombia., 2023-05-24) Casanova Pietroboni, Carlos Antonio; Schab, Esteban Alejandro; Prado, Lucas Martín; Rottoli, Giovani Daian
    When solving multi-objective combinatorial optimization problems using a search algorithm without a priori information, the result is a Pareto front. Selecting a solution from it is a laborious task if the number of solutions to be analyzed is large. This task would benefit from a systematic approach that facilitates the analysis, comparison and selection of a solution or a group of solutions based on the preferences of the decision makers. In the last decade, the research and development of algorithms for solving multi-objective combinatorial optimization problems has been growing steadily. In contrast, efforts in the a posteriori exploration of non-dominated solutions are still scarce.
  • Thumbnail Image
    Item
    Toma de decisiones en sistemas de eventos mediante inteligencia computacional y computación de alto desempeño
    (Red de Universidades con Carreras en Informática, 2022-04) Schab, Esteban Alejandro; Lopresti, Olga Mariela; Miranda , Natalia Carolina; Casanova Pietroboni, Carlos Antonio; Piccoli, María Fabiana
    La toma de decisiones en contextos dominados por grandes volúmenes de datos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. La disponibilidad de información generada por personas y dispositivos abre nuevos desafíos en el diseño de mecanismos para aprovecharla. Estos deben ser capaces de determinar las decisiones de mayor utilidad sujetas a ventanas temporales que garanticen su factibilidad. Uno de estos mecanismos lo constituyen las distintas analíticas, las cuales buscan transformar los datos en información a través de técnicas diversas. En este trabajo proponemos dos líneas de investigación, una enfocada en la analítica prescriptiva, capaz de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado; la otra relacionada con las técnicas de aprendizaje supervisado y la recuperación de información no estructurada. En ambos, se propone la utilización de desarrollos provenientes de la Inteligencia Computacional y de la Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.
  • Thumbnail Image
    Item
    Modelo prescriptivo dinámico para un sistema de eventos complejo
    (Red de Universidades con Carreras en Informática, 2021-04-15) Schab, Esteban Alejandro; Casanova Pietroboni, Carlos Antonio; Piccoli, María Fabiana
    La toma de decisiones en contextos dominados por grandes volúmenes de datos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. La disponibilidad de información generada por personas y dispositivos abre nuevos desafíos en el diseño de mecanismos que puedan aprovecharla, de tal manera de que sean capaces de determinar las decisiones de mayor utilidad sujetas a ventanas temporales que garanticen su factibilidad. Uno de estos mecanismos lo constituyen las analíticas en sus distintos tipos, las cuales buscan transformar los datos en información a través de técnicas diversas. En este trabajo proponemos una línea de investigación enfocada en la analítica prescriptiva, capaz de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado. Para componerlas se propone la utilización de desarrollos provenientes de la Inteligencia Computacional y de la Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.
  • Thumbnail Image
    Item
    Toma de decisiones científica en la ingeniería de software mediante inteligenica computacional y análisis de datos
    (Red de Universidades con Carreras en Informática, 2021-04) Casanova Pietroboni, Carlos Antonio; Chichi, Manuel; Hoet, Leonardo Alfonso; Pereyra Rausch, Fernando Nahuel; Prado, Lucas Martín; Rottoli, Giovani Daián; Schab, Esteban Alejandro; De Battista, Anabella Cecilia
    La adopción de herramientas formales que complementen la experiencia y el buen juicio en las distintas actividades de un proceso de desarrollo de software todavía es un pendiente dentro la industria del software. La falta de conocimientos respecto de enfoques realistas para resolver problemas de la IS y la falta de herramientas software que auxilien a los tomadores de decisiones utilizando tales enfoques son dos carencias que pueden explicar las dificultades en esta adopción. Las líneas de investigación aquí propuestas tienden a suplir ambas. Para esta tarea se propone la utilización de tanto técnicas comprendidas en lo que se conoce como Inteligencia Computacional (IC), dentro de las cuales se encuentran la teoría de conjuntos difusos, las redes neuronales y la computación evolutiva, como también de herramientas de la Ciencia de Datos, incluyendo técnicas de aprendizaje automático, estadísticas y visualización de datos, entre otros. Estas técnicas son capaces de brindar la flexibilidad necesaria para crear métodos y modelos que sean tolerantes a la imprecisión, la falta de información y la aproximación, características que le son propias a los contextos de decisión en la IS.
  • Thumbnail Image
    Item
    Toma de decisiones multicriterio en problemas de la ingeniería de software utilizando computación blanda
    (Red de Universidades con Carreras en Informática, 2020-05) Casanova Pietroboni, Carlos Antonio; Chichi, Manuel; Gabioud, María Luján; Pereyra Rausch, Fernando Nahuel; Prado, Lucas Martín; Rottoli, Giovanni Daián; Schab, Esteban Alejandro; De Battista, Anabella Cecilia
    La Ingeniería de Software (IS) como la aplicación de un enfoque sistemático, disciplinado y cuantificable al desarrollo, operación y mantenimiento de software. Sin embargo, la adopción de herramientas formales que complementen la experiencia y el buen juicio en las distintas actividades de un proceso de desarrollo de software todavía es un pendiente dentro la industria del software, particularmente en la Argentina. Dos carencias que pueden explicar esto son, por un lado, la falta de conocimientos respecto de enfoques realistas para resolver problemas relativos a la IS, y por otro, la falta de herramientas software que auxilien a los tomadores de decisiones utilizando tales enfoques. Las líneas de investigación aquí propuestas tienden a suplir ambas carencias. Para esta tarea se propone la utilización de técnicas comprendidas en lo que se conoce como computación blanda (soft computing), dentro de las cuales se encuentran la Teoría de Conjuntos Difusos, las Redenes Neuronales y los métodos de Búsqueda Heurística y Metaheurística. La soft computing es capaz de brindar la flexibilidad necesaria para crear métodos y modelos que sean tolerantes a la imprecisión, la falta de información y la aproximación, características que le son propias a los contextos de decisión en la IS.
  • Thumbnail Image
    Item
    Jornada CyT 28-9-2023 : reconocimiento GUI y ACO"
    (2023-09-28) Casanova Pietroboni, Carlos Antonio; Schab, Esteban Alejandro; Prado, Lucas Martín; Rottoli, Giovanni Daián; Hoet, Leonardo Alfonso; Forni, Lucas; Grandi, Tobías Andrés; Chichi, Manuel; Pereyra Rausch, Fernando Nahuel
    Presentación en el marco de la semana de la ciencia del Grupo GIICIS sobre las líneas de investigación del grupo.
  • Thumbnail Image
    Item
    Exploración a posteriori basada en clustering del frente pareto- óptimo aplicado al problema del próximo lanzamiento
    (2019-11-15) Rottoli, Giovanni Daián; Casanova Pietroboni, Carlos Antonio; Schab, Esteban Alejandro; De Battista, Anabella Cecilia
    La ingeniería de software basada en búsqueda propone la formulación de problemas de la ingeniería de software como problemas de optimización, generalmente con múltiples objetivos. Para estos problemas existen múltiples soluciones que deben ser analizadas por los tomadores de decisiones para seleccionar aquella que más se adecúe a sus necesidades, pudiendo este no tener preferencias previas sobre la mejor solución a ser seleccionada. Para ello, este artículo propone un acercamiento basado en agrupamiento que permite la exploración a posteriori del espacio de soluciones, describiendo las mismas no solo utilizando el valor de sus objetivos, sino también la configuración de los elementos que conforman las mismas. Se presenta una prueba de concepto del método propuesto utilizando el frente Pareto Óptimo solución de una instancia del Problema del Próximo Lanzamiento.
  • Thumbnail Image
    Item
    Optimización multiobjetivo basada en preferencias para problemas de la ingeniería de software
    (Universidad Nacional de San Juan, 2019-04-25) Casanova Pietroboni, Carlos Antonio; Arrúa, Martín Nahuel; Bracco, Luciano Joaquín; Pereyra Rausch, Fernando Nahuel; Rottoli, Giovanni Daián; Schab, Esteban Alejandro; Tournoud, Adrián Alberto; De Battista, Anabella Cecilia
    La Ingeniería de Software Basada en Búsqueda (ISBB) se sustenta en la aplicación de técnicas de optimización heurística para resolver problemas de la Ingeniería de Software (IS). Las tarea de la IS se enmarcan en un problema de búsqueda, con lo cual es posible utilizar multitud de algoritmos para resolverlos. En su mayoría, los trabajos existentes tratan a los problemas de la IS desde un punto de vista mono-objetivo. Sin embargo, muchos de estos problemas poseen múltiples objetivos en conflicto que deben ser optimizados de forma simultánea. Si bien la comunidad científica ha propuesto varios enfoques de solución para atacar la optimización multi-objetivo, muchos de estos enfoques no se han aplicado aún en la ISBB. Uno de estos enfoques es el llamado “basado en preferencias”, el cual permite capturar e incorporar las preferencias entre los objetivos del tomador de decisiones, de manera de poder restringir el frente Pareto-óptimo a una zona de interés específica, con el objetivo de facilitar la tarea de tomar una decisión.