FRCU - GIICIS: Grupo de Investigación en Inteligencia Computacional e Ingeniería de Software
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/4094
Browse
4 results
Search Results
Item Multi-criteria and multi-expert requirement prioritization using fuzzy linguistic labels(ParadigmPlus, 2022-02-08) Rottoli, Giovani Daian; Casanova Pietroboni, Carlos AntonioRequirement prioritization in Software Engineering is the activity that helps to select and or-der for the requirements to be implemented in each software development process iteration. Thus, requirement prioritization assists the decision-making process during iteration management. This work presents a method for requirement prioritization that considers many experts’ opinions on multiple decision criteria provided using fuzzy linguistic labels, a tool that allows capturing the imprecision of each experts’ judgment. These opinions are then aggregated using the fuzzy ag-gregation operator MLIOWA considering different weights for each expert. Then, an order for the requirements is given considering the aggregated opinions and different weights for each evaluated dimension or criteria. The method proposed in this work has been implemented and demonstrated using a synthetic dataset. A statistical evaluation of the results obtained using different t-norms was also carried out.Item Multi-criteria group requirement prioritization in software engineering using fuzzy linguistic labels(2021-10-30) Casanova Pietroboni, Carlos Antonio; Rottoli, Giovani DaianRequirement prioritization is a Software Engineering task that helps to choose which and in what order requirements will be implemented in each software development process iteration. In the same way, requirement prioritization is extremely useful to make decisions during iteration management. In this work a method for requirement prioritization is proposed. This method considers many experts’ opin-ions on multiple decision criteria provided using fuzzy linguistic labels, which allows to capture the imprecision of each experts’ judgment. The opinions are aggregated using a majority-guided linguistic IOWA operator considering different weights for each expert and then the requirements are prioritized considering the aggregated opinions and different weights for each evaluated dimension. The proposed method has been implemented and demonstrated using a test dataset.Item Fuzzy bi-objective particle swarm optimization for next release poblem(2019-07-10) Casanova Pietroboni, Carlos Antonio; Rottoli, Giovanni Daián; Schab, Esteban Alejandro; Bracco, Luciano Joaquín; Pereyra Rausch, Fernando Nahuel; De Battista, Anabella CeciliaIn search-based software engineering (SBSE), software engineers usually have to select one among many quasi-optimal solutions with different values for the objectives of interest for a particular problem domain. Because of this, a metaheuristic algorithm is needed to explore a larger extension of the Pareto optimal front to provide a bigger set of possible solutions. In this regard the Fuzzy Multi-Objective Particle Swarm Optimization (FMOPSO), a novel a posteriori algorithm, is proposed in this paper and compared with other state-of-the-art algorithms. The results show that FMOPSO is adequate for finding very detailed Pareto Fronts.Item Optimización multiobjetivo difusa mediante enjambre de partículas aplicada al problema del próximo lanzamiento(2019-05-02) Casanova Pietroboni, Carlos Antonio; Rottoli, Giovanni Daián; Schab, Esteban Alejandro; De Battista, Anabella Cecilia; Tournoud, Adrián Alberto; Bracco, Luciano Joaquín; Pereyra Rausch, Fernando NahuelEn este trabajo se presenta un método novedoso basado en Enjambres de Partículas y Lógica Difusa para optimización multiobjetivo: el FMOPSO (Fuzzy Multi-Objective Particle Swarm Optimization). Este método se presenta en el contexto de la resolución de un problema clásico de la Ingeniería de Software Basada en Búsqueda: el Problema del Próximo Lanzamiento (Next Release Problem). Se realiza una prueba de concepto aplicando este algoritmo a una instancia bi-objetivo del problema mencionado anteriormente, y se lo compara con otra metaheurística del estado del arte. Finalmente, se concluye resaltando los resultados más importantes.