FRD - Investigación - Ciencia y Tecnología
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1225
Browse
8 results
Search Results
Item Bioremediation of an industrial soil contaminated by hydrocarbons in microcosm system, involving bioprocesses utilizing co-products and agro-industrial wastes(2023-09-29) Conde Molina, Debora; Liporace, Franco; Quevedo, CarlaThe present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were significantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix + N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justified when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost–benefit.Item Site-specific bioremediation by bioaugmentation and biostimulation approaches on a chronically hydrocarbon-contaminated industrial soil.(2023-09) Conde Molina, Debora; Liporace, Franco; Quevedo, CarlaThe present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were signifcantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix+N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justifed when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost–beneft.Item Optimization of biomass production by autochthonous Pseudomonas sp. MT1A3 as a strategy to apply bioremediation in situ in a chronically hydrocarbon-contaminated soil.(2022-04) Conde Molina, Debora; Liporace, Franco; Quevedo, CarlaThese days, petroleum hydrocarbon pollution has become a global problem, because of this, bioremediation is presented as a strategy for cleaning up sites contaminated with organic pollutants, and it has an increasing role in relation to the potential it presents as a non-invasive and cost-effective technology. The aim of this study is to optimize the biomass production of Pseudomonas sp. MT1A3 strain as a soil bioremediation approach for petroleum hydrocarbon polluted environments. Factorial experimental designs were employed to study the effect of several factors of composition medium and incubation conditions on biomass production. Agro-industrial wastes such as peanut oil as carbon source, NaNO3 as nitrogen source and incubation temperature were found to be significant independent variables. These factors were further optimized using Box–Behnken design. Combination of peanut oil 18.69 g/L, NaNO3 2.39 g/L and 26.06 °C incubation temperature was optimum for maximum biomass production of MT1A3 and the model validated in a bioreactor allowed to obtain 9.67g/L. Based on these results, this autochthonous strain was applied in bioaugmentation as a bioremediation strategy through microcosm designs, reaching 93.52% of total hydrocarbon removal at 60 days. This constitutes a promising alternative for hydrocarbon-contaminated soil.Item Optimization of a site-specific biostimulation strategy using response-surface methodology to remediate a chronically hydrocarbon-contaminated industrial soil.(Argentine Society for Biochemistry and Molecular Biology, 2021-11) Conde Molina, Débora; Liporace, Franco; Quevedo, CarlaIn present times, contamination with petroleum compounds is one of the most important environmental problems, mainly in industrial areas. The Zárate-Campana petrochemical pole, Buenos Aires, Argentina, has a history of hydrocarbon contamination of more than 100 years, so it is relevant to recover these contaminated areas through the development of site-specific bioremediation technologies that are compatible with the environment. In this work, biostimulation strategy to remediate chronically hydrocarbon-contaminated soil was approached by the addition of nutrients such as nitrogen (N) and phosphorus (P) in order to evaluate the influence of these on the growth of the autochthonous microflora. Therefore, the response-surface methodology as a statistical tool was used to predict the optimum values of N and P concentration with the aim of obtaining the maximum total hydrocarbon removal in the soil. Microcosm systems were carried out into flasks containing contaminated samples belonging to RHASA refinery areas. Different N (NaNO3) and P (Na2HPO4) concentrations were added to each system according to central composite design, and incubated at 20-25°C for 90 days. Hydrocarbon concentration content was measured by gas chromatography as the response of the model. Results showed that the addition of 0.589 g N/kg and 0.304 g P/kg leads to the highest hydrocarbon removal efficiency, decreasing from 6881 ppm to 728 ppm. In addition biostimulation strategy was compared with natural attenuation and 89.71% of total hydrocarbons were removed when the biostimulation was applied, while in natural attenuation was 72.06%. In both treatments, total aerobic heterotrophic bacteria increased during 90 days, whereas the count of hydrocarbon degrading bacteria remained stable. The biostimulation strategy approached in this work showed to be a promising alternative to remediate the soils of the study site.Item Aplicación de cepas autóctonas en estrategia de bioaumento para remediar suelos crónicamente contaminados con hidrocarburos.(Congreso Argentino de Microbiología Agrícola y Ambiental, 2021-09) Conde Molina, Débora; Liporace, Franco; Quevedo, CarlaUno de los problemas ambientales más importantes es la contaminación con hidrocarburos del petróleo, principalmente en las zonas industriales. El polo petroquímico Zárate -Campana, Buenos Aires, Argentina presenta un historial de contaminación con hidrocarburos de más de 100 años, es por eso que resulta importante la recuperación de estas áreas contaminadas a partir del desarrollo de tecnologías de biorremediación sitio específicas, compatibles con el medio ambiente. En este trabajo se estudiaron 6 cepas de bacterias degradadoras de hidrocarburos TK1A2, MT1A3, LG1A, AG1A, CO1A1 y CO1A2, aisladas de sitios crónicamente contaminados con hidrocarburos e identificadas en los géneros Pseudomonas, Cellulosimicrobium y Ochrobactrum. A fin de evaluar la producción de biomasa y biosurfactantes, las cepas aisladas fueron cultivadas en medio mínimo salino con diferentes fuentes de carbono (mezcla de hidrocarburos, glucosa, glicerol, suero de leche bovino, suero de leche ovino, aceite de girasol refinado, aceite de girasol alto oleico, aceite de maní crudo, aceite de maní frito o aceite de camelina) y de nitrógeno (NaNO3, NH4Cl urea). Si bien todas las cepas fueron capaces de crecer en todas las fuentes de carbono y nitrógeno ensayadas, en presencia de aceite de maní crudo, exhibieron mayor producción de biomasa. Con respecto a las fuentes de nitrógeno estudiadas, las cepas MT1A3, LG1A, AG1A y CO1A2 tuvieron mayor crecimiento en NaNO3, mientras que las cepas TK1A2 y CO1A1 crecieron manera similar en las fuentes de nitrógeno. MT1A3, TK1A2, CO1A1 y CO1A2 no mostraron ser productoras de biosurfactantes en las todas las condiciones ensayadas, mientras que en los medios de cultivos con LG1A y AG1A se registró disminución de la tensión superficial con respecto a los controles en varios de los medios formulados. Resultando ser AG1A en glicerol la mejor condición para producir biosurfactantes. Partiendo de estos resultados, todas las cepas fueron cultivadas en un mismo medio de cultivo con el objetivo de emplear esta mezcla en estrategias de bioaumento en un sistemas de microcosmos para la remoción de hidrocarburos de un suelo crónicamente contaminado. El tratamiento mostró que las bacterias aeróbicas heterótrofas totales aumentaron durante los 90 días que duró el ensayo, mientras que el crecimiento de bacterias degradadoras de hidrocarburos se mantuvo estable. Paralelamente, se observó una degradación de 84,17% de hidrocarburos totales, cuando se aplicó el bioaumento, mientras que en el control (atenuación natural) fue del 72,06%. En base a estos resultados, las cepas estudiadas muestran un gran potencial para ser usadas como bioaumento en sistemas de microcosmos, siendo una alternativa prometedora combinada con una estrategia de bioestimulación para remediar los suelos del sitio de estudio.Item Strategies to develop healthier industrial white slice diary bread through fat, sugar and flour substitution(2021-04) Conde Molina, Débora; Quevedo, Carla; Arqueros, ValeriaIntroduction. Industrial white slice dairy bread (WSDB) is an interesting target for developing a reduced calorie bread as it contains fat and sugar in its formulation. Three commercial substitutes were evaluated in this study in order to improve nutritional profile of bread. Materials and methods. Toler Fat Less Saladas (TFLS) as fat substitute, Granofiber Sweet (GS) as sugar substitute and Granofiber Sym 200 (GS200) as flour substitute, were assessed by analyzing the dough fermentative properties using Rheofermentometer, and the dough behaviour properties on mixing–heating–cooling using Mixolab. Additionally, loaf specific volume and texture profile were measured as baking quality parameters. Results and discussion. In case of fat substitution, TFLS caused a similar effect to fat, showing high starch gelatinization. In agreement, fat and TFLS provided WSDB with similar changes in crumb texture, which led to improve the quality of bread preservation at short shelf life of end-product (5 and 10 days). Otherwise, sugar substitution influenced mainly gas production during fermentation stage. However, dough development was similar when sugar or GS was added in WSDB, thereby increasing loaf specific volume. These results may indicate that GS applied in a complex formulation bread as WSDB, provides a suitable effect like sugar. Concerning flour replacement, several rheology changes and a significant decrease of gas production occurred on GS200 added-dough. However, GS200 showed an important contribution in gas retention capacity, influencing in good dough development. Therefore, bread loaf specific volume of WSDB+GS200(3%) and WSDB+GS200(6%) showed satisfactory results, indicating the potential capacity to use GS200 on WSDB recipe to formulate high fiber bread. Conclusions. We conclude that substitutes evaluated in this work can be used for breadmaking to improve nutritious quality of bread for health benefits.Item Evaluating effect of fat, sugar and flour substitutes on properties of white slice dairy bread(2020-12-31) Conde Molina, Débora; Quevedo, Carla; Arqueros, ValeriaImproving nutritional profile food is a growing area of interest in the food industry, due to there being a raising awareness toward healthy foods. Furthermore, knowledge about the relationship between food, its physiological function and diseases is increasing, particularly in obesity, diabetes, cardiovascular diseases and some types of cancer [1, 2, 3, 4]. Therefore, food industry works with healthcare professionals, scientific community, government, and media in order to ensure that the public has accurate information on healthy food [5]. Accordingly, the improvement of the nutritional quality of bread represents an interesting alternative to accompany the planning of food policies for healthy lifestyles, due bread is one of the most consumed food products in the world, in Argentina 70 it being kg / inhab / year [6]. Particularly white slice dairy bread (WSDB) is the most important industrial bread consumed in Argentina, and it contains fat and sugar in its formulation, resulting in an interesting target to reduce calory content. Knowing the functions and responses of substitutes in dough, it is very important to establish when reducing or removing it from the baking products. Substitutes result in the induction of different bread properties; hence, these effects study should be considered in order to preserve the original quality parameters required for bread production. Bread may be successfully prepared with a reduction of fat, sugar and flour, this modification may fit into many calorie-restricted diets and the product will be similar than the unmodified original counterpart. Thus, this research aims to evaluate the effect of fat, sugar and flour substitution on fermentative and rheological properties on flour and then on WSDB. Toler Fat Less Saladas (TFLS) as fat substitute, Granofiber Sweet (GS) as sugar substitute, Granofiber Sym 200 (GS200) as flour substitute, were respectively tested in order to validate their replacement capabilities to formulate bread with better nutritional quality than originally formulated. Manuscript is organized as follows. Section I contains the introduction of the background of this investigation. Section II focuses in the process involved in the bread production and the properties of each stage. Section III provides an explanation on the determination of the fermentative and rheological properties of flour and bread formulations, including preparation of bread and bread baking quality. Section IV discusses the effects of substitutes on flour and bread properties. Section V provides the concluding remarks.Item Sodium chloride substitution in industrial white slide diary bread(2021-03) Conde Molina, Débora; Quevedo, Carla; Arqueros, ValeriaIntroduction. The effect of sodium chloride replacement was studied in industrial white slice diary bread, promoting a technological approach to decrease the sodium content from bakery products in order to respond to the World Health Organization´s recommendation to reduce dietary salt intake. Materials and methods. Granolife CV Sustisal 100 (GCVS100) was evaluated as sodium chloride substitute analyzing the dough fermentative properties by Rheofermentometer, and the dough behaviour properties on mixing–heating–cooling by Mixolab. Additionally, loaf specific volume and texture profile were considered as baking quality parameters. Results and discussion. The addition of GCVS100 or NaCl to wheat flour dough led to decrease gas production during fermentation stage. However, they significantly increased the coefficient of gas retention, promoting the improvement of the gluten network and allowing to get a dough development curve similar to dough flour. Additionally, both ingredients changed several flour dough parameters in Mixolab. Water absorption was decreased, dough stability was prolonged, gelatinization process (C3-C2) was reduced, stability of the starch gel when heated (C4- C3) was improved and retrogradation of the starch was increased. GCVS100 assessed in WSDB formula showed similar effects than NaCl. The addition of GCVS100 or NaCl to WSDB caused reduction of gas production during fermentation. Meanwhile, the coefficient of gas retention did not show significant differences between the treatments, due to WSDB formulation include compounds promoter of strengthening of the gluten structure of the dough that masked NaCl and GCVS100 effect. In this way, NaCl and GCVS100 led to decrease dough development according to less gas production. WSDB baking parameters revealed that bread loaf specific volume was significantly higher for WSDB without NaCl or GCVS100, in agreement with fermentation results. Texture profile analysis of WSDB did not showed changes in crumb firmness and springiness when NaCl or GCVS100 is added. Conclusions. The addition of GCVS100 in WSDB caused a similar effect to NaCl. The results of the present study suggest that GCVS100 exhibits a potential use to obtain sodium-free WSDB.