FRD - Investigación - Ciencia y Tecnología
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1225
Browse
9 results
Search Results
Item Enhancing biodegradation of vegetable oil-contaminated soil with soybean texturized waste, spent mushroom substrate, and stabilized poultry litter in microcosm systems.(2024-06) Conde Molina, Debora; Di Gregorio, VaninaIndustrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.Item Bioremediation of an industrial soil contaminated by hydrocarbons in microcosm system, involving bioprocesses utilizing co-products and agro-industrial wastes(2023-09-29) Conde Molina, Debora; Liporace, Franco; Quevedo, CarlaThe present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were significantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix + N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justified when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost–benefit.Item Vegetable oil contaminated sites: bioremediation treatments.(2023-07) Conde Molina, Debora; Corpus, Athina; Piperata, GabrielaThe environment is negatively impacted by occasional discharges from industrial activity. When these events contain insoluble compounds such as fats and oils, they are high impact pollutants. This work focuses on an environmental problem in the industrial area of Buenos Aires, Argentina, where a lagoon was contaminated by vegetable oil residues. The aim of this work is to study bioremediation strategies in order to propose solutions for the remediation of the lagoon. For this way, autochthonous vegetable oil degrading bacteria were isolated from Lagoon 3, and the conditions to produce bacterial biomass were evaluated. Then, through microcosms systems using contaminated coastal soil, different site-specific treatments were tested: a control as natural attenuation; a bioaugmentation treatment with autochthonous vegetable oil degrading bacteria; two biostimulation treatments with nitrogen and phosphorus, and with spent mushroom substrate. Although both bioaugmentation and biostimulation showed promising results, biostimulation with N, P was the most effective for site-specific bioremediation of Lagoon 3, achieving 67% of oil vegetable reduction at 60 days.Item Site-specific bioremediation by bioaugmentation and biostimulation approaches on a chronically hydrocarbon-contaminated industrial soil.(2023-09) Conde Molina, Debora; Liporace, Franco; Quevedo, CarlaThe present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were signifcantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix+N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justifed when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost–beneft.Item Removal of vegetable oils from contaminated coastal soil by bioaugmentation and biostimulation(Congreso Latinoamericano de Ecología Microbiana, 2023-08) Conde Molina, Debora; Corpus, Athina; Piperata, GabrielaThe environment is negatively impacted by occasional discharges from industrial activity. When these events contain insoluble compounds such as fats and oils, they are high impact pollutants. This work focuses on an environmental problem in the industrial area of Zárate-Campana, Buenos Aires, Argentina, where a lagoon was contaminated by vegetable oil residues. The aim of this work is to study bioremediation strategies in order to propose solutions for the remediation of the lagoon. For this purpose, different site-specific treatments were evaluated through microcosms systems using contaminated coastal soil. These treatments were: a control as natural attenuation; a bioaugmentation treatment with autochthonous vegetable oil degrading bacteria (5x1010 CFU/g); two biostimulation treatments with nitrogen (NaNO3, 1 g/Kg) and phosphorus (Na2HPO4, 0.2 g/Kg), and with spent mushroom substrate (10 %w/w). The microcosms carried out with 200 g of soil were incubated at 22 °C for 60 days. Samples were taken every 20 days in order to determine moisture, pH, biological activity by counting total aerobic heterotrophic bacteria and oil degrading bacteria, and total oil concentration through FTIR. The treatments showed oil removal above 43 %, being the most efficient the biostimulation with nitrogen and phosphorus, which reached 58 % degradation after 60 days. Furthermore, the evolution of oil degradation correlated with the increase in microbiological activity in all systems. We concluded that biostimulation with nitrogen and phosphorus was the most appropriate strategy to apply for lagoon remediation.Item Potential of vegetable oil degrading bacteria as inoculum for bioaugmentation in the remediation of contaminated sites.(Encuentro Internacional de Ciencias de la Tierra, 2022-11) Conde Molina, Debora; Sanchez Hulmedilla, Celene; Silva, Fausto; Piperata, GabrielaThe environment is negatively impacted by occasional discharges from industrial activity. When these discharges contain insoluble compounds such as fats, oils and grease, they are high impact pollutants. This work focuses on an environmental problem in the industrial area of Campana, Buenos Aires, where a vegetable oil residues treatment industry generated a significant uncontrolled discharge of waste into Lagoon 3 of the private nature reserve El Morejón. In view of this, there is a need to address bioremediation strategies to clean up the area. The aim of this work is to study growth conditions of vegetable oil degrading bacterial consortia, previously isolated from lagoon 3, with a view to applying it as an inoculum in bioaugmentation strategy. For this purpose, bacteria were tested in flask containing liquid culture media at different conditions, such as: medium formulated with 2-5 % v/v vegetable oil -as only carbon source-, shaking at 135-220 rpm, medium formulated with alternative carbon source of sweet potato waste (5% w/v). The best condition for the growth of bacteria was a culture medium formulated with 5 % v/v vegetable oil, incubated at 135 rpm for days, reaching 9 g/L of biomass. Moreover, this condition maintains the selection pressure so that bacteria preserve the ability to degrade vegetable oils. The significant biomass obtained positions these autochthonous bacteria with great potential to be applied as bioaugmentation in site-specific bioremediation strategy for the remediation of Lagoon 3.Item Optimization of biomass production by autochthonous Pseudomonas sp. MT1A3 as a strategy to apply bioremediation in situ in a chronically hydrocarbon-contaminated soil.(2022-04) Conde Molina, Debora; Liporace, Franco; Quevedo, CarlaThese days, petroleum hydrocarbon pollution has become a global problem, because of this, bioremediation is presented as a strategy for cleaning up sites contaminated with organic pollutants, and it has an increasing role in relation to the potential it presents as a non-invasive and cost-effective technology. The aim of this study is to optimize the biomass production of Pseudomonas sp. MT1A3 strain as a soil bioremediation approach for petroleum hydrocarbon polluted environments. Factorial experimental designs were employed to study the effect of several factors of composition medium and incubation conditions on biomass production. Agro-industrial wastes such as peanut oil as carbon source, NaNO3 as nitrogen source and incubation temperature were found to be significant independent variables. These factors were further optimized using Box–Behnken design. Combination of peanut oil 18.69 g/L, NaNO3 2.39 g/L and 26.06 °C incubation temperature was optimum for maximum biomass production of MT1A3 and the model validated in a bioreactor allowed to obtain 9.67g/L. Based on these results, this autochthonous strain was applied in bioaugmentation as a bioremediation strategy through microcosm designs, reaching 93.52% of total hydrocarbon removal at 60 days. This constitutes a promising alternative for hydrocarbon-contaminated soil.Item Evaluation of a native strain isolated from chronically hydrocarbon-contaminated sites.(Universidad Nacional de General San Martín, 2016-07) Conde Molina, Débora; Giullieti, Ana María; Quevedo, CarlaThe industrial center Zárate – Campana represents one of the most important petrochemical areas in Argentina with several companies carrying out petrochemical activities. Due to spills produced in the area during last 50 years, it has generated hydrocarbon pollution on the site. In order to evaluate growth conditions of a native strain from chronically hydrocarbon-contaminated sites, in the present work we studied an environmental strain identified in the genus, which can degrade crude oil. Different cultures conditions were assayed in Erlenmeyer flasks, containing minimal salt medium and supplemented with a mixture of hydrocarbons (HC) of various molecular weights as only carbon source. Ochrobactrum sp strain (currently being a molecularly characterized) was cultivated at two temperatures: 20 and 25 ºC, and several substrate concentrations, 2, 4.5, 6, 7, 8 y 10 % V/V. Cultures were kept at 135 rpm and pH=7 during 14 days. Bacterial growth was estimated by cell dry weight method, for this a sample of 18 mL culture broth was collected at every 24 h, drying at 80ºC. Many bacteria in nature have been found to be capable of degrading crude oil, using it as their sole carbon source. Experiment showed that this strain can use HC as its carbon source. The maximum biomass concentration was obtained when the bacteria was cultured in media with 4.5 % of HC at 20ºC and 25ºC (1,33 g/L and 1,75 g/L) respectively at day 8. In addition, a significant biomass concentration was observed too when were used 6% and 7 % of HC in both temperatures between 7 and 13 days of cultured. According to these results, the environmental-derived strain Ochrobactrum sp isolated from hydrocarbon contaminated sites, has the ability to degrade crude oil at high level concentrations, and this could have potential use in bioremediation technologies.Item Bioremediation strategies based on a native strain isolated from sites contaminated with hydrocarbons.(Argentine Society for Biochemistry and Molecular Biology, 2016-11) Conde Molina, Débora; Liporace, Franco; Vázquez, Susana; Merini, Luciano; Quevedo, CarlaThe bacterial strain studied in this work is a member of a bacterial consortium isolated from chronically hydrocarbon-contaminated site in Campana (Bs.As.). This native strain was identified as Pseudomonas sp. according to its 16S rRNA gene partial sequence. The ability of this strain to produce biosurfactants was evaluated in Erlenmeyer flasks containing a minimal saline medium (MSM) supplemented with different carbon sources: a mixture of hydrocarbons (HC; 4.5%v/v), glycerol (Gly; 2%v/v), sunflower oil (SO; 2%v/v) and peanut oil (PO; 2%v/v). Cultures were performed at 135 rpm and 25 ºC for 4 days. Bacterial growth was measured by cell dry-weight method, and biosurfactant production was estimated by direct measurement of the surface tension (ST). Results showed that bacteria was able to grow on all the carbon sources tested, reaching concentrations of 1.24g/l in HC, 7.69g/l in Gly, 3.98g/l in SO and 9.29g/l in PO. Culture supernatants showed a decrease in ST values when the strain grew on SO and PO (22.5% and 25.5%). No decrease in ST values was observed when HC and Gly were used as carbon source. As results shown, this bacterial strain can produce biosurfactants under certain culture conditions. This potential advantage could be applied in bioremediation strategy of hydrocarbon contaminated sites.