FRD - CENES

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1235

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Nanopartículas metálicas para remediación de aguas con arsénico
    (2023-05-03) Miralles, Bernabé; Paredes, María Yanela; Scarpettini, Alberto Franco
    La exposición prolongada al arsénico presente en aguas naturales provoca enfermedades crónicas en la población. La remoción de este metaloide de forma rápida y eficiente es uno de los mayores desafíos de hoy. En este trabajo proponemos nanoestructuras híbridas plasmónicas y magnéticas para la remediación de aguas con arsénico utilizando la luz solar. Con este objetivo, se sintetizaron nanopartículas esféricas de diferentes metales de transición, de alrededor de 15 nm de diámetro y baja dispersión en tamaño. Se las utilizaron como nanocatalizadores en la oxidación del arsénico a una especie menos nociva. Al iluminar la muestra se excitan resonancias de plasmones superficiales en la superficie de las nanopartículas, incrementando su temperatura y generando portadores de carga altamente energéticos, factores que contribuyen a acelerar la reacción. Se comparó la velocidad de reacción y la eficiencia de conversión de As(III) a As(V) bajo diferentes condiciones: catálisis heterogénea, con temperatura y con irradiación. Se separaron y analizaron las diferentes contribuciones a la catálisis para elegir el material plasmónico más eficiente, que soportado sobre núcleos de magnetita constituye un nanosistema completo para la oxidación y adsorción del arsénico, y su remoción de forma magnética.
  • Thumbnail Image
    Item
    Kinetic and plasmonic properties of gold nanorods adsorbed on glass substrates
    (2019-10-24) Gutiérrez, Marina V.; Scarpettini, Alberto Franco
    Monodisperse gold nanorods with different sizes were synthesized and adsorbed on chemically modified glass substrates. Influence of surfactant molar concentration on nanorod adsorption was studied and the optimum range was determined. During substrate coverages we monitored the growth of longitudinal localized surface plasmon resonances at short times due to density increase of isolated nanorods and, at longer times, their subsequent decrease and a concurrent growth of coupling resonances owing to nanoparticle surface mobility and aggregation. Temporal evolution of amplitudes of resonance peaks in extinction spectra and nanorod counting statistics in electron micrographs were used to model both coverage and aggregation processes, as exponentiallike functions of time. Their characteristic times and saturation values were analyzed and related to kinetic parameters, nanorod dimensions and extinction coefficients. This work can be used as a predictive tool to prepare plasmonic substrates with desired optical resonances.
  • Thumbnail Image
    Item
    Determination of nanoscale mechanical properties of polymers via plasmonic nanoantennas
    (2020-06-02) Boggiano, Hilario D.; Berté, Rodrigo; Cortés, Emiliano; Maier, Stefan A.; Bragas, Andrea V.; Scarpettini, Alberto Franco
    Nanotechnology and the consequent emergence of miniaturized devices are driving the need to improve our understanding of the mechanical properties of a myriad of materials. Here we focus on amorphous polymeric materials and introduce a new way to determine the nanoscale mechanical response of polymeric thin films in the GHz range, using ultrafast optical means. Coupling of the films to plasmonic nanoantennas excited at their vibrational eigenfrequencies allows the extraction of the values of the mechanical moduli as well as the estimation of the glass transition temperature via time-domain measurements, here demonstrated for PMMA films. This nanoscale method can be extended to the determination of mechanical and elastic properties of a wide range of spatially strongly confined materials.
  • Thumbnail Image
    Item
    Challenges on optical printing of colloidal nanoparticles.
    (2022-01-18) Violi, Ianina L.; Martínez, Luciana P.; Barella, Mariano; Zaza, Cecilia; Chvátal, Lukás; Zemánek, Pavel; Gutiérrez, Marina V.; Paredes, María Yanela; Scarpettini, Alberto Franco; Olmos-Trigo, Jorge; Pais, Valeria R.; Díaz Nóblega, Iván; Cortés, Emiliano; Sáenz, Juan José; Bragas, Andrea V.; Gargiulo, Julián; Stefani, Fernando D.
    While colloidal chemistry provides ways to obtain a great variety of nanoparticles with different shapes, sizes, material compositions, and surface functions, their controlled deposition and combination on arbitrary positions of substrates remain a considerable challenge. Over the last ten years, optical printing arose as a versatile method to achieve this purpose for different kinds of nanoparticles. In this article, we review the state of the art of optical printing of single nanoparticles and discuss its strengths, limitations, and future perspectives by focusing on four main challenges: printing accuracy, resolution, selectivity, and nanoparticle photostability.
  • Thumbnail Image
    Item
    Nanoestructuras plasmónicas y magnéticas como fotocatalizadores en la oxidación de arsénico y su remoción del agua
    (2022-10-03) Paredes, María Yanela; Scarpettini, Alberto Franco
    Desarrollamos un protocolo de síntesis de nanoestructuras catalíticas bifuncionales, con propiedades plasmónicas y magnéticas, conformadas por nanoesferas de oro adsorbidas sobre un núcleo magnético de Fe3O4, para ser utilizadas en la remediación de aguas con arsénico. El diseño está basado en que las nanopartículas de oro actúen como catalizadores en la oxidación de la especie As(III) a la menos tóxica As(V), y bajo iluminación resonante aceleren aún más la reacción. La superficie de Fe3O4 actúa como sitio activo para la adsorción de arsénico y puede ser fácilmente removible del agua mediante un imán. Estudiamos las isotermas de adsorción y la respuesta óptica y magnética de este nanosistema.
  • Thumbnail Image
    Item
    Nanoestructuras esféricas núcleo-cáscara con resonancias plasmónicas sintonizables
    (Asociación Argentina de Investigación en Fisicoquímica, 2019-04) Paredes, María Yanela; Scarpettini, Alberto Franco
    Las nanopartículas constituidas por un núcleo dieléctrico rodeado por una capa metálica forman una clase de nanoestructuras con notables propiedades ópticas. Sus resonancias de plasmones superficiales derivan del acoplamiento de las resonancias de esfera y cavidad, y son dependientes de la geometría, de las dimensiones interna y externa de su envoltura metálica, del material que las componen y del entorno. La absorción y dispersión óptica es intensa y puede abarcar una región notablemente grande del espectro electromagnético, desde frecuencias ultravioletas, visibles hasta el infrarrojo cercano. En este trabajo se desarrolla un protocolo, para obtener estructuras esféricas del tipo núcleo-cáscara, de sílice y oro, con resonancias sintonizables, para ser usadas como plataformas de sensado molecular ultrasensible