UTN- FRC -Producción Académica de Investigación y Desarrollo

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1932

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    Eliminación de azufre mediante desulfuración oxidativa con Ti-SBA-16. Parte I. Síntesis y caracterización.
    (Univesidsad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Ponte , María Virginia; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Ponte , María Virginia; Ledesma , Brenda Cecilia; Ledesma , Lorena Paola; Vallés , Verónica Alejandra
    Se desarrollaron catalizadores tipo SBA-16 modificados con Ti como TiO2 y como heteroatomo y se probaron en la desulfuración oxidativa (ODS) del dibenzotiofeno predominante en el combustible líquido. Se utilizó TiO2 puro como referencia para comparar la actividad catalitica. Los catalizadores fueron caracterizados mediante análisis químico, XRD, EDX y TEM. El estado de coordinación tetraédrico del titanio (en la muestra de Ti-SBA-16) u octaédrico (en la muestra de TiO2/SBA-16) en la matriz de sílice se determinó por XPS, UV-vis DRS, FTIR, Raman y XANES. La actividad catalítica se muestra en la Parte 2 de este trabajo.
  • Thumbnail Image
    Item
    Sulfur elimination by oxidative desulfurization with titanium-modified SBA-16L.
    (Univesidsad Tecnológica Nacional., 2016) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura; Ledesma , Brenda Cecilia; Vallés , Verónica Alejandra
    Over the past, oxidative desulfurization (ODS) has drawn considerable interest as a new alter native method for deep sulfur elimination from light oils. This can be attributed to its attrac tive properties, including lower temperature and pressure conditions and lower operating cost [1-3] than conventional hydrodesulfurization (HDS) process. Oxidation of organosulfur com pounds results in the formation of sulfoxides/sulfones, highly polar and hence easily removed by both extraction into polar solvents or by adsorption. Due to their low reactivity, diben zothiophene derivatives (DBTs) are the most refractory species to be eliminated from oils. Hence, the ODS process through which DBTs are converted to their corresponding sulfones involves great interest at present [4-6]. We recently reported a good performance of this sup port in hydrotreating processes [7]. In this work, we describe the preparation and characteriza tion of new mesoporous catalytic materials based on Ti-containing SBA-16. We study here, the effect of the preparation method of titania-modified SBA-16 (characteristics of the active Ti and/or TiO2 species) and the effect of the different operation conditions in ODS of DBT under mild conditions in order to find the best performance. TiO2-modified mesoporous SBA 16 and titanium-substituted mesoporous SBA-16 were developed and tested in the oxidative desulfurization (ODS) of dibenzothiophene prevailing in liquid fuel. We assessed the impact exerted on performance of different reaction variables, including (nature and amount of the active catalytic species, phase system, molar ratio of oxidant H2O2 and DBT, reaction tempe rature, nature of the substrate and reuse of catalysts).
  • Thumbnail Image
    Item
    Vanadium and titanium oxide supported on mesoporous CMK-3 as new catalysts for oxidative desulfurization.
    (Univesidsad Tecnológica Nacional., 2017) Rivoira , Juliana María; Juárez , Juliana María; Falcón, Horacio; Gómez Costa, Marcos Bruno; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Juárez , Juliana María
    Diesel emissions contribute to environmental issues associated to sulfur oxides released during the combustion process of fuels. Ultra-low-sulfur-diesel (ULSD) is diesel with substantially lowered sulfur content. Many countries have established regulations to restrict the S content in petroleum products to be 15 ppm and zero emission is even expected1 . Alternatively, oxidative desulfurization (ODS) provides selective removal of those refractory sulfur compounds at proper temperatures and pressure and is capable to eliminate most refractory sulfur compounds in HDS. This is the process wherein dibenzothiophene derivatives are converted to their corresponding sulfone, which could be easily separated from the oil. Therefore, ODS has a great potential to become a complementary process to traditional HDS in the production of deeply desulfurized diesel fuels. In view of the recent studies, Ti and V oxides have demonstrated to improve S-compounds oxidation2,3. In this work we evaluate vanadium and titanium-based catalysts supported over a mesoporous carbon with large surface area (CMK-3) in the ODS of dibenzothiophene as a model sulfur compound.
  • Thumbnail Image
    Item
    Experimental desing optimization of the ods of DBT using V2O5 supported on GA-SBA-15.
    (Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelina
    Experiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box– Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.
  • Thumbnail Image
    Item
    Experimental Desing Optimization of the ODS of DBT using V2O5 supported on Ga-SBA-15.
    (Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelina
    Experiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the catalyst/substrate ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with Ga/Si and V/Si ratios of v1/15 and 1/25, respectively. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support.
  • Thumbnail Image
    Item
    VOx-SBA-15 modified with AI and Ga in ODS of DBT.
    (Univesidsad Tecnológica Nacional., 2018) Rivoira , Lorena Paola; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura
    In order to adapt current processes to the strict regulatory requirements, several technologies have been developed for deep desulfurization of diesel fuel. The major portion of sulfur compounds in light cycle oils (LCO) are dibenzothiophene (DBT) and alkyl-dibenzothiophenes, which are not easily removable by hydrotreating. Vanadium oxides supported on mesoporous SBA-15 catalysts with different vanadium loadings were studied in the oxidative desulfurization (ODS) of dibenzothiophene. The catalytic activity was improved when SBA-15 framework was modified with Al and Ga as heteroatom substituting Si. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium VO4-3 species are responsible for the high activity in the sulfur removal. The Ga modified support with an intermediate V/Si ratio was the most active catalyst, using hydrogen peroxide as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions. Gallium and aluminum incorporation modified successfully the nature of the SBA-15 surface by generating Bronsted and Lewis acidity. The interaction between the acid sites with the vanadium active sites improved the activity of the catalysts. The more acidic support allowed better dispersion of the vanadium species due to stronger interaction metal-support. The reusability of the catalysts indicates that vanadium oxide supported on mesoporous SBA-15 modified with Ga and Al are potential catalysts for the ODS of dibenzothiophene.
  • Thumbnail Image
    Item
    Sulfur elimination by ODSwith titanium-modified SBA-16.
    (Univesidsad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura; Ledesma, Brenda; Vallés , Verónica Alejandra
    Nanostructured carbon CMK-3 and mesoporous silica SBA-15 modified with Fe by using different sources of Fe, were used in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) as a model sulfur compound. Fe-CMK-3 and Fe-SBA-15 were prepared by wetness impregnation using FeCl3.6H2O and FeNO3.9H2O as different sources of Fe. A solution of FeCl3.6H2O/ FeNO3.9H2O in ethanol was mixed with the corresponding material solution (CMK-3 or SBA-15) at room temperature. The solution was placed in a rotary evaporator to remove excess of ethanol at about 333 K and 60 rpm. Afterwards, the sample was dried at 373 K for 18 h and was thermally treated in a dynamic inert (N2) atmosphere. The percentage of Fe has been 2 wt.% with respect to carbon in the final FeCl3-CMK-3 and FeNO3-CMK-3 material. Four samples modified with Fe have been prepared and were characterized by XRD, FTIR, XPS, BET, TEM and SEM. These studies indicated that it was possible to obtain a CMK-3 replica successfully from SBA-15, using sucrose as a carbon precursor. Wide angle XRD pattern of the sample modified with FeCl3.6H2O implies the formation of the magnetite phase in the silica channels. The nanomaterial area is significantly smaller with the incorporation of the metal, SBA-15 and CMK-3`s characteristic structure is maintained after the metal is within the host, in agreement with the XRD studies. The catalytic activity was improved when the nanoporous materials were modified with Fe. The nanoporous carbon modified with FeCl3.6H2O was the most active catalyst for ODS of DBT, using hydrogen peroxide (H2O2) as oxidant and acetonitrile as solvent. 100% of DBT elimination was attained at a short time in mild conditions.
  • Thumbnail Image
    Item
    Iron-modified mesoporous materials as catalysts for ODS of sulfur compounds.
    (Univesidsad Tecnológica Nacional, 2018) Rivoira , Lorena Paola; Juárez , Juliana María; Martínez , María Laura; Beltramone , Andrea Raquel; Juárez , Juliana María
    Mandatory environmental regulations have been legislated all over the world so the top permitted content of sulfur in diesel is 15 ppm. ODS is the oxidation of sulfur compounds present in diesel to form sulfoxides and sulfones. These substances are highly polar and hence easily removed by extraction with solvent. Oxidant agent commonly used are peroxides such as hydrogen peroxide and tert-butylhydroperoxide (Di Giusepe et al., 2009). Since Diesel is a non-polar liquid while H2O2 is a polar liquid, a polar solvent is needed. The formed polar products can be easily removed from the operation unit by liquid liquid extraction. Mesoporous materials have been tried showing potential catalytic applications. Transition metals are commonly used as catalyst in ODS such as Mo, Mn, Sn, Fe, Zn, V and Ti (Cedeño-Caero et al., 2011). In this work, we propose the application of different supports as SBA-15, MCM-48, CMK-1 and CMK-3 for the preparation of Fe-catalysts.