FRCU - GIBD : Grupo de Investigación en Bases de Datos
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/774
Browse
Search Results
Item Construcción de una función de distancia para consultar por similitud caracteres de hueso de oráculo(2023-11-03) Pascal, Andrés Jorge; Planas, Adrián Nicolás; Castiglioni, León; Stauber, Federico J.; López, Martín RodrigoLos caracteres de hueso de oráculo (OBC) de la antigua China representan el sistema de escritura antiguo más renombrado a nivel mundial. El estudio e identificación de los OBC y su desciframiento se erigen como uno de los aspectos más cruciales dentro de la esfera de investigación de estos artefactos históricos. Entre los desafíos que enfrenta esta investigación, destaca el hecho de que la revisión de la literatura al respecto suele demandar considerables recursos temporales y de mano de obra. En consecuencia, la digitalización de la literatura OBC surge como una dirección inevitable para el desarrollo futuro de este campo. Por otro lado, durante la última década las Redes Neuronales Profundas Convolucionales (CNN) han demostrado un alto rendimiento en el procesamiento automático de imágenes. Este artículo presenta un enfoque que combina preprocesamiento, aumento de datos y modelos CNN para aprender una función de distancia para buscar por similitud caracteres OBC en un escenario Few-Shot Learning, utilizando una arquitectura de Redes Siamesas en su proceso de entrenamiento. La principal ventaja de utilizar Búsquedas por Similitud en lugar de modelos de clasificación, es que el sistema permite el agregado de nuevos elementos (clases) sin modificación del modelo ni reentrenamiento.Item Búsquedas por similitud de logos: extracción de características usando IA en escenarios de datos escasos(2023-11-03) Pascal, Andrés Jorge; Bonti, Agustina; Vidal Leiva, Florencia Zoe; Bonti, Iván Federico; Tonelotto, Lucas FranciscoEn el panorama actual, las Búsquedas por Similitud emergen como un ámbito de profundo interés. La evaluación de la similitud entre objetos generalmente involucra el empleo de funciones métricas de distancia aplicadas a vectores que representan características extraídas a partir de los mismos. Este artículo se enfoca en la extracción de características aplicada a imágenes de logos de clubes, utilizando técnicas modernas de aprendizaje automático; en particular, Redes Neuronales Profundas Convolucionales (CNN), Redes Siamesas y Transfer Learning/Fine Tuning. Si bien estas técnicas son muy potentes, su aplicación conlleva en algunos casos el desafío del entrenamiento ante datos escasos (One Shot Learning, en este caso). En este estudio comparamos dos enfoques de extracción de características en el contexto de escasez de datos, proponemos un método eficaz de preprocesamiento, y evaluamos experimentalmente el rendimiento de ambos métodos aplicados a la búsqueda por similitud de logos.