FRLP - I+D+i - GRUTN - GMG

Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/1760

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Intruder in a two-dimensional granular system: effects of dynamic and static basal friction on stick-slip and clogging dynamics
    (2019-10-15) Carlevaro, Manuel; Kozlowski, Ryan; Pugnaloni, Luis; Zheng, Hu; Socolar, Joshua E. S.; Kondic, Lou
    We discuss the results of simulations of an intruder pulled through a two-dimensional granular system by a spring, using a model designed to lend insight into the experimental findings described by Kozlowski et al. [Phys. Rev. E 100, 032905 (2019)]. In that previous study the presence of basal friction between the grains and the base was observed to change the intruder dynamics from clogging to stick–slip. Here we first show that our simulation results are in excellent agreement with the experimental data for a variety of experimentally accessible friction coefficients governing interactions of particles with each other and with boundaries. Then, we use simulations to explore a broader range of parameter space, focusing on the friction between the particles and the base. We consider a range of both static and dynamic basal friction coefficients, which are difficult to vary smoothly in experiments. The simulations show that dynamic friction strongly affects the stick–slip behaviour when the coefficient is decreased below 0.1, while static friction plays only a marginal role in the intruder dynamics.
  • Thumbnail Image
    Item
    Structure of force networks in tapped particulate systems of disks and pentagons II Persistence analysis
    (American Physical Society, 2016) Kondic, L.; Kramar, M.; Pugnaloni, Luis; Carlevaro, Manuel; Mischaikow, K.
    In the companion paper [Pugnaloni et al., Phys. Rev. E 93, 062902 (2016)], we use classical measures based on force probability density functions (PDFs), as well as Betti numbers (quantifying the number of components, related to force chains, and loops), to describe the force networks in tapped systems of disks and pentagons. In the present work, we focus on the use of persistence analysis, which allows us to describe these networks in much more detail. This approach allows us not only to describe but also to quantify the differences between the force networks in different realizations of a system, in different parts of the considered domain, or in different systems. We show that persistence analysis clearly distinguishes the systems that are very difficult or impossible to differentiate using other means. One important finding is that the differences in force networks between disks and pentagons are most apparent when loops are considered: the quantities describing properties of the loops may differ significantly even if other measures (properties of components, Betti numbers, force PDFs, or the stress tensor) do not distinguish clearly or at all the investigated systems.
  • Thumbnail Image
    Item
    Effect of particle shape and fragmentation on the response of particle dampers
    (SAGE Publications, 2014) Sánchez, Martín; Carlevaro, Manuel; Pugnaloni, Luis
    A particle damper (PD) is a device that can attenuate mechanical vibrations thanks to the dissipative collisions between grains contained in a cavity attached to the vibrating structure. It has been recently suggested that, under working conditions in which the damping is optimal, the PD has a universal response in the sense that the specific dissipative properties of the grains cease to be important for the design of the device. We present evidence from simulations of PDs containing grains of different sizes, shapes and restitution coefficients, that the universal response is also valid when fragmentation of the grains occurs (generally due to intensive operation of the PD). In contrast, the welding of grains (caused by operation under high temperatures) can take the PD out of the universal response and deteriorate the attenuation. Interestingly, we observed that even at working conditions off the optimal damping, the shape of the grains remains unimportant for the response of the PD.
  • Thumbnail Image
    Item
    Structure of force networks in tapped particulate systems of disks and pentagons I Clusters and loops
    (American Physical Society, 2016) Pugnaloni, Luis; Carlevaro, Manuel; Kramar, M; Mischaikow, K; Kondic, L
    The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic et al., Phys. Rev. E 93, 062903 (2016)], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network’s topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.
  • Thumbnail Image
    Item
    Exact predictions from Edwards ensemble vs realistic simulations of tapped narrow two dimensional granular columns
    (Journal of Statistical Mechanics: Theory and Experiment, 2013) Irastorza, Ramiro; Carlevaro, Manuel; Pugnaloni, Luis
    We simulate, via a discrete element method, the tapping of a narrow column of disks under gravity. For frictionless disks, this system has a simple analytical expression for the density of states in the Edwards volume ensemble. We compare the predictions of the ensemble at constant compactivity against the results for the steady states obtained in the simulations. We show that the steady states cannot be properly described since the microstates sampled are not in correspondence with the predicted distributions, suggesting that the postulates of flat measure and ergodicity are, either or both, invalid for this simple realization of a static granular system. However, we show that certain qualitative features of the volume fluctuations which are difficult to predict from simple arguments are captured by the theory.
  • Thumbnail Image
    Item
    Effect of grain shape on the jamming of two dimensional silos
    (EPJ Web of Conferences, 2017) Goldberg, Ezequiel; Carlevaro, Manuel; Pugnaloni, Luis
    We present discrete element method simulations of the discharge of silos in two dimensions. We study the effect of the grain shape on the clogging of small apertures, considering regular polygons and disks of equal mass. In particular, we analyze the avalanche size distribution and the jamming probability for disks, triangles, squares, pentagons, hexagons and heptagons as a function of the aperture size. We show that the jamming probability presents a non-linear response as a function of the number of vertexes of the polygons.
  • Thumbnail Image
    Item
    Flow rate of polygonal grains through a bottleneck Interplay between shape and size
    (Papers in Physics, 2015) Goldberg, Ezequiel; Carlevaro, Manuel; Pugnaloni, Luis
    We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks\red{,} as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria.