Mostrar el registro sencillo del ítem

dc.creatorLa Red Martínez, David Luis
dc.creatorGiovannini, Mirtha
dc.creatorBáez, María Eugenia
dc.creatorTorre, Juliana
dc.creatorYaccuzzi, Nelson
dc.date.accessioned2020-05-29T13:16:40Z
dc.date.available2020-05-29T13:16:40Z
dc.date.issued2017-04-01
dc.identifier.issn2315-7704
dc.identifier.urihttp://hdl.handle.net/20.500.12272/4437
dc.description.abstractOften times, universities are not able to deal with the variety of factors that may affect the academic performance of students. This kind of situation generates the need for tools that establish academic performance patterns, setting profiles as a basis to detect potential cases of underachieving students who need support in their academic activities. This paper proposes the use of Data Warehousing and Data Mining techniques on performance, social, economic, demographic and cultural data from students who took “Algorithms and Data Structures”, which is a subject in the Information Systems Engineering curricula at UTN-FRRe (Resistencia, Chaco, Argentina) in an attempt to establish generic academic performance profiles. From the descriptive analysis obtained during the 2013 to 2015 period from the subject aforementioned, a predictive model was used. It establishes the possibility of students' academic failure, taking into account the factors earlier mentioned.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.uriAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.uriAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.sourceAcademia Journal of Educational Research 5(4), 061-075. (2017)es_ES
dc.subjectacademic performancees_ES
dc.subjecteducational data mininges_ES
dc.subjectpredictive data mininges_ES
dc.subjecthigher educationes_ES
dc.subjectcourse assessmentes_ES
dc.subjectstudent assessmentes_ES
dc.titleAcademic performance problems : a predictive data mining-based modeles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationFil: La Red Martínez, David Luis. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.affiliationFil: Giovannini, Mirta Eve. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.affiliationFil: Báez, María Eugenia. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.affiliationFil: Torre, Juliana. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.affiliationFil: Yaccuzzi, Nelson. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.relation.projectidDiseño de un modelo predictivo de rendimiento académico mediante la utilización de minería de datos. Director del proyecto: Dr. David L. La Red Martínezes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.useAcceso abiertoes_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem