Análisis de Resolución de Mapas de entrada en Método de Predicción de Incendios Forestales
Fecha
2017-01-01Autor
Zúñiga, Agustín
Méndez Garabetti, Miguel
Bianchini, Germán
Caymes Scutari, Paola
Tardivo, María
Metadatos
Mostrar el registro completo del ítemResumen
Los incendios forestales son una de las causas principales de la desaparición de grandes superficies de bosques en el mundo de manera anual. Entre las grandes pérdidas que de ellos resultan pueden destacarse: a) la pérdida de bosques, flora y fauna; b) la pérdida de vidas humanas a causa de los intentos de sofocar y/o controlar los incendios; y c) las pérdidas económicas por daños materiales y gastos en el cuidado y evacuación de personas en riesgo. Por estos motivos se considera de gran importancia destinar esfuerzos y recursos en el fortalecimiento de las tareas de prevención, monitoreo y predicción de incendios forestales con el fin lograr un mejor control de su comportamiento, logrando con esto evitar los daños producidos por el fuego, tanto en los bosques como en las poblaciones cercanas, y minimizar los riegos de trabajo de hombres y mujeres por extinguirlos. La predicción del comportamiento de un incendio forestal es una tarea compleja que suele estar afectada por la incertidumbre proveniente del desconocimiento de los valores en los parámetros de entrada del modelo de predicción. ESSIM-EA (Sistema Estadístico Evolutivo con Modelo de Islas basado en Algoritmos Evolutivos)es un método de reducción de incertidumbre el cual ha sido aplicado a la predicción del comportamiento de incendios forestales controlados. En el presente trabajo se ha aplicado dicho método en casos de incendios forestales reales, con el objetivo de identificar la resolución adecuada de los mapas de entrada que permitan brindar un balance adecuado entre calidad de predicción y tiempo de procesamiento.
Colecciones
El ítem tiene asociados los siguientes ficheros de licencia: