Mostrar el registro sencillo del ítem

dc.creatorChirino, Pamela
dc.creatorGaldámez Bilardi, Mariela
dc.creatorBianchini, Germán
dc.creatorCaymes Scutari, Paola
dc.date.accessioned2023-06-28T12:50:14Z
dc.date.available2023-06-28T12:50:14Z
dc.date.issued2019-10-09
dc.identifier.citationX Encuentro de Investigadores y Docentes de Ingeniería (X EnIDI 2019). Año 2019.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12272/8177
dc.description.abstractEn los últimos años, la Inteligencia Artificial ha ido avanzando y se ha utilizado en diversas áreas. Algunas aplicaciones de esta es el reconocimiento de voz, de imágenes, el análisis de texto, entre otras. Una de las características principales de la Inteligencia Artificial es la capacidad de aprendizaje, de cambiar su comportamiento según la información que se obtiene. Mientras más se haya entrenado el modelo, más probabilidad hay de que se llegue al resultado deseado. El proceso de aprendizaje es complejo y suele llevar bastante tiempo en términos computacionales. En este trabajo, se propone aplicar el paralelismo en los algoritmos de aprendizaje de redes neuronales para hacer a estos más eficientes. Cuando hablamos de un algoritmo eficiente nos referimos a una mejora apreciable en tiempo para la cantidad de recursos que se utilizan, en nuestro caso procesadores. Las neuronas de las redes neuronales, las cuales se encuentran en varias capas, poseen conexiones que van a ir cambiando hasta que el modelo sea el más cercano al óptimo. Es decir, cuando se haya llegado a un nivel de aprendizaje máximo ya que se ha encontrado una “función” donde el error de la solución deseada y la obtenida por el modelo es mínimo. En este proyecto se comenzará buscando la forma de paralelizar uno o varios algoritmos de aprendizaje para redes neuronales de acuerdo a la necesidad. Luego, se analizará si hay mejoras en su eficiencia. El objetivo a futuro de esta investigación es poder aplicar redes neuronales en el modelo paralelo de predicción de incendios utilizado en el laboratorio LICPaDa . En este modelo se trabaja constantemente con la incertidumbre de variables, lo que dificulta una predicción óptima. Al implementar redes neuronales en el modelo, se buscará que este logre una mejor toma de decisiones sobre las variables según qué peso tienen estas en el incendio a predecir.es_ES
dc.formatpdfes_ES
dc.language.isospaes_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.rights.uriCC0 1.0 Universal*
dc.subjectParalelismo, Redes Neuronales, Inteligencia Artificial, Aprendizajees_ES
dc.titleParalelismo en algoritmos de aprendizaje para redes neuronales (resumen)es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holderUniversidad Tecnológica Nacional. Facultad Regional Mendozaes_ES
dc.description.affiliationUniversidad Tecnológica Nacional. Facultad Regional Mendoza; Argentinaes_ES
dc.relation.projectidPID 7658es_ES
dc.type.versionacceptedVersiones_ES
dc.rights.useAtribuciónes_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess