A soybean supply chain model to analyze the greenhouse gas emissions of the transport sector
dc.creator | Verrengia, María de los Milagros | |
dc.creator | Vecchietti, Aldo Rodomiro | |
dc.creator.orcid | 0009-0002-2838-2189 | |
dc.creator.orcid | 0000-0002-0791-9496 | |
dc.date.accessioned | 2025-06-05T18:48:59Z | |
dc.date.issued | 2022-05-12 | |
dc.description.abstract | This article presents a mathematical model of the soybean´s supply chain for Argentina where the different stakeholders and the material flows among them are represented. The transport used in this sector are trucks, trains, and river ships. The objective is to analyze the emissions of greenhouse gases (GHG) generated by the transportation in this sector using electric trucks as an alternative to biodiesel ones. The model generated is a mixed multi-period / multi-objective linear integer model, destined at minimizing operating and GHG emissions cost. The accuracy of the model is compared against two statistical studies made by the Transport Agency of Argentina in 2014 and 2017 regarding the soybean transportation. The results show a good fit with those reports. Two scenarios are compared, in the first one only biodiesel trucks are used for transportation, while in the second one trains, barges and electric trucks are included. Results show the tradeoff between investment costs and reduction of emissions where it is possible to achieve a 60% GHG decrease, which is far to compensate for the investment cost. | |
dc.description.abstract | Trabajo presentado en el 32nd European Symposium on Computer Aided Process Engineering – ESCAPE-32 y publicado en Computer Aided Chemical Engineering (Vol. 51). | |
dc.description.affiliation | Fil: Vecchietti, Aldo Rodomiro. CONICET-UTN. Instituto de desarrollo y diseño (INGAR); Argentina. | |
dc.description.affiliation | Fil: Verrengia, María de los Milagros. CONICET-UTN. Instituto de desarrollo y diseño (INGAR); Argentina. | |
dc.description.peerreviewed | Peer Reviewed | |
dc.format | ||
dc.identifier.citation | Verrengia, M.M., & Vecchietti, A.R. (2022). A soybean supply chain model to analyze the greenhouse gas emissions of the transport sector. En: Computer Aided Chemical Engineering (Vol. 51, pp. 1327–1332). Elsevier. https://doi.org/10.1016/B978-0-323-95879-0.50222-8 | |
dc.identifier.doi | https://doi.org/10.1016/B978-0-323-95879-0.50222-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13177 | |
dc.language.iso | en | |
dc.publisher | Computer Aided Chemical Engineering (Book Series) | |
dc.relation.projectid | SITCAFE0008418TC | |
dc.relation.projectid | Modelado de la Cadena de Suministro de da Industria de da Soja en Argentina con Técnicas de Programación Matemática y Ciencia de Datos | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution 4.0 International | en |
dc.rights.holder | Los autores | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights.use | CreativeCommons | |
dc.subject | Soybean | |
dc.subject | Supply chain | |
dc.subject | Emissions | |
dc.subject | Transportation | |
dc.title | A soybean supply chain model to analyze the greenhouse gas emissions of the transport sector | |
dc.type | info:eu-repo/semantics/bookPart | |
dc.type.version | publisherVersion |