ESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameters

dc.creatorMéndez Garabetti, Miguel
dc.creatorBianchini, Germán
dc.creatorCaymes Scutari, Paola
dc.creatorTardivo, María
dc.creatorGil Costa, Verónica
dc.date.accessioned2023-06-08T16:29:07Z
dc.date.available2023-06-08T16:29:07Z
dc.date.issued2017-10-09
dc.description.abstractAbstract. Wildfires devastate thousands forests acres every year around the world. Fire behavior prediction is a useful tool to cooperate in the coordination, mitigation and management of available resources to fight against this type of contingencies. However, the prediction of this phenomenon is usually a difficult task due to the uncertainty in the prediction process. Therefore, several methods of uncertainty reduction have been developed, such as the Evolutionary Statistical System with Island Models based on Evolutionary Algorithms (ESSIM-EA). ESSIMEA focuses its operation on an Evolutionary Parallel Algorithm based on islands, in which the same configuration of evolutionary parameters is used. In this work we present an extension of the ESSIM-EA that allows each island to select an independent configuration of evolutionary parameters. The heterogeneous configuration proposed, at the island level, with the original methodology in three cases of controlled fires has been contrasted. The results show that the proposed ESSIM-EA extension allows to improve the quality of prediction and to reduce processing times.es_ES
dc.description.affiliationUniversidad Tecnológica Nacional. Facultad Regional Mendoza; Argentinaes_ES
dc.formatpdfes_ES
dc.identifier.citationXXIII Congreso Argentino de Ciencias de la Computaciónes_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12272/8016
dc.language.isospaes_ES
dc.relation.projectidPID 3939es_ES
dc.rightsopenAccesses_ES
dc.rights.holderUniversidad Tecnológica Nacional. Facultad Regional Mendozaes_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.rights.uriCC0 1.0 Universal*
dc.rights.useAtribuciónes_ES
dc.subjectWildfire prediction, HPC, Uncertainty reduction, Metaheuris- tics.es_ES
dc.titleESSIM-EA applied to Wildfire Prediction using Heterogeneous Configuration for Evolutionary Parameterses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versionacceptedVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
12_90_CACIC-2017.pdf
Size:
225.21 KB
Format:
Adobe Portable Document Format
Description:
XXIII Congreso Argentino de Ciencias de la Computación

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: