Dinámica de cables OPGW : optimización y cuantificación de incertidumbre del amortiguamiento estructural
Date
2024-12-13
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
El presente trabajo de tesis se centra en el desarrollo de modelos matemáticos y herramientas de análisis en aspectos de optimización y cuantificación de incertidumbre, útiles para el diseño, análisis dinámico y mantenimiento de líneas aéreas de transmisión eléctrica. Se hace especial énfasis en el amortiguamiento de vibraciones eólicas de cables de fibra óptica (OPGW), atendiendo a las características de las construcciones propias de nuestro país. Los estudios propuestos se caracterizan por una fuerte impronta de actividades específicas de laboratorio y mediciones de campo, para validar los modelos computacionales estocásticos propuestos. Se utilizó un enfoque probabilístico paramétrico para cuantificar la incertidumbre asociada al Método del Balance de Energía (EBM). Los parámetros abordados en el estudio se presentan como variables aleatorias a través del Principio de Máxima Entropía. Se realizaron simulaciones de Monte Carlo para contrastar las incertidumbres de entrada y salida, seguidas de un análisis de sensibilidad global para identificar los factores de mayor influencia, destacando el autoamortiguamiento y las propiedades del amortiguador como las principales fuentes de incertidumbre. Paralelamente, se elaboró un modelo de elementos finitos (MEF) calibrado mediante Inversión Bayesiana y modelos estocásticos de viento basados en procesos de Wiener. Por la complejidad computacional del modelo propuesto, se implementó un metamodelo tipo Kriging que disminuye el costo computacional, propagando las incertidumbres asociadas a la carga de viento para obtener distribuciones de variables de respuesta dinámica. Las mediciones de campo posibilitaron la validación de los resultados de la simulación. En última instancia, se aplicaron técnicas de Optimización del Diseño Basado en Confiabilidad (RBDO) para mejorar la eficiencia de los sistemas amortiguantes. La metodología propuesta permite identificar el posicionamiento óptimo de los amortiguadores Stockbridge para minimizar las amplitudes de vibración y mitigar los riesgos asociados con la fatiga.
The present thesis focuses on developing mathematical models and analysis tools in optimization and uncertainty quantification that are valid for the design, dynamic analysis, and maintenance of overhead electrical transmission lines. Particular emphasis is placed on damping wind-induced vibrations in optical ground wire (OPGW), considering the characteristics of constructions specific to our country. The proposed studies are characterized by a strong imprint of specific laboratory activities and field measurements to validate the proposed stochastic computational models. A parametric probabilistic approach was used to quantify the uncertainty associated with the Energy Balance Method (EBM). The parameters addressed in the study are presented as random variables through the Principle of Maximum Entropy. Monte Carlo simulations were performed to contrast the input and output uncertainties, followed by a global sensitivity analysis to identify the most influential factors, highlighting self-damping and damper properties as the primary sources of uncertainty. In parallel, a finite element model (FEM) was developed and calibrated using Bayesian inversion and stochastic wind models based on Wiener processes. Due to the computational complexity of the proposed model, a Kriging-type metamodel was implemented to reduce the computational cost, propagating the uncertainties associated with wind load to obtain distributions of dynamic response variables. Field measurements enabled the validation of the simulation results. Finally, Reliability-Based Design Optimization (RBDO) techniques were applied to improve the efficiency of damping systems. The proposed methodology allows for the identification of the optimal positioning of Stockbridge dampers to minimize vibration amplitudes and mitigate fatigue-related risks.
The present thesis focuses on developing mathematical models and analysis tools in optimization and uncertainty quantification that are valid for the design, dynamic analysis, and maintenance of overhead electrical transmission lines. Particular emphasis is placed on damping wind-induced vibrations in optical ground wire (OPGW), considering the characteristics of constructions specific to our country. The proposed studies are characterized by a strong imprint of specific laboratory activities and field measurements to validate the proposed stochastic computational models. A parametric probabilistic approach was used to quantify the uncertainty associated with the Energy Balance Method (EBM). The parameters addressed in the study are presented as random variables through the Principle of Maximum Entropy. Monte Carlo simulations were performed to contrast the input and output uncertainties, followed by a global sensitivity analysis to identify the most influential factors, highlighting self-damping and damper properties as the primary sources of uncertainty. In parallel, a finite element model (FEM) was developed and calibrated using Bayesian inversion and stochastic wind models based on Wiener processes. Due to the computational complexity of the proposed model, a Kriging-type metamodel was implemented to reduce the computational cost, propagating the uncertainties associated with wind load to obtain distributions of dynamic response variables. Field measurements enabled the validation of the simulation results. Finally, Reliability-Based Design Optimization (RBDO) techniques were applied to improve the efficiency of damping systems. The proposed methodology allows for the identification of the optimal positioning of Stockbridge dampers to minimize vibration amplitudes and mitigate fatigue-related risks.
Description
Keywords
Cables OPGW, Vibraciones eólicas, Amortiguamiento, Incertidumbre
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess