Graph representations for reinforcement learning
dc.creator | Schab, Esteban Alejandro | |
dc.creator | Casanova Pietroboni, Carlos Antonio | |
dc.creator | Piccoli, María Fabiana | |
dc.creator.orcid | 0000-0002-2142-2187 | |
dc.creator.orcid | 0000-0002-3636-7360 | |
dc.date.accessioned | 2024-12-27T15:06:20Z | |
dc.date.issued | 2024-04 | |
dc.description.abstract | Graph analysis is becoming increasingly important due to the expressive power of graph models and the efficient algorithms available for processing them. Reinforcement Learning is one domain that could ben- efit from advancements in graph analysis, given that a learning agent may be integrated into an environ- ment that can be represented as a graph. Nevertheless, the structural irregularity of graphs and the lack of prior labels make it difficult to integrate such a model into modern Reinforcement Learning frameworks that rely on artificial neural networks. Graph embedding enables the learning of low-dimensional vector representations that are more suited for machine learning algorithms, while retaining essential graph features. This paper presents a framework for evaluating graph embedding algorithms and their ability to preserve the structure and relevant features of graphs by means of an internal validation metric, without resorting to subsequent tasks that require labels for training. Based on this framework, three defined algorithms that meet the necessary requirements for solving a specific problem of Reinforcement Learningin graphs are selected, analyzed, and compared. These algorithms are Graph2Vec, GL2Vec, and Wavelet Characteristics, with the latter two demonstrating superior performance. | |
dc.description.affiliation | Fil: Schab, Esteban Alejandro. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación Inteligencia Computacional e Ingeniería de Software; Argentina. | |
dc.description.affiliation | Fil: Casanova Pietroboni, Carlos Antonio. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación Inteligencia Computacional e Ingeniería de Software; Argentina. | |
dc.description.affiliation | Fil: Casanova Pietroboni, Carlos Antonio. Universidad Autónoma de Entre Ríos; Argentina. | |
dc.description.affiliation | Fil: Piccoli, María Fabiana. Universidad Nacional de San Luis; Argentina. | |
dc.description.affiliation | Fil: Piccoli, María Fabiana. Universidad Autónoma de Entre Ríos; Argentina. | |
dc.format | ||
dc.identifier.citation | Journal of Computer Science and Technology | |
dc.identifier.doi | https://doi.org/10.24215/16666038.24.e03 | |
dc.identifier.issn | 1666-6038 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/12050 | |
dc.language.iso | en | |
dc.publisher | Universidad Nacional de La Plata. Facultad de Informática. | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.holder | Schab, Esteban Alejandro ; Casanova Pietroboni, Carlos Antonio ; Piccoli, María Fabiana. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights.use | No comercial con fines académicos. Licencia Creative Commons CC BY-NC-SA. | |
dc.source | Journal of Computer Science and Technology, 24(1), 29-38. (2024) | |
dc.subject | Computational intelligence | |
dc.subject | Reinforce- ment learning | |
dc.subject | Graph embeddings | |
dc.subject | Unsupervised GRL | |
dc.subject | Whole graph embedding | |
dc.title | Graph representations for reinforcement learning | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |