A comparative study of evolutionary statistical methods for uncertainty reduction in forest fire propagation prediction

dc.creatorTardivo, María
dc.creatorCaymes Scutari, Paola
dc.creatorBianchini, Germán
dc.creatorMéndez Garabetti, Miguel
dc.creatorCencerrado, Andrés
dc.creatorCortés, Ana
dc.date.accessioned2023-06-06T14:33:08Z
dc.date.available2023-06-06T14:33:08Z
dc.date.issued2017-06-12
dc.description.abstractPredicting the propagation of forest fires is a crucial point to mitigate their effects. Therefore, several computational tools or simulators have been developed to predict the fire ropagation. Such tools consider the scenario (topography, vegetation types, fire front situation), and the particular conditions where the fire is evolving (vegetation conditions, meteorological conditions) estimate precisely, and there is a high degree of uncertainty in many of them. This uncer-tainty provokes a certain lack of accuracy in the predictions with the consequent risks. So, it to predict the fire propagation. However, these parameters are usually difficult to measure or is necessary to apply methods to reduce the uncertainty in the input parameters. This work presents a comparison of ESSIM-EA and ESSIM-DE: two methods to reduce the uncertainty in the input parameters. These methods combine Evolutionary Algorithms, Parallelism and Statistical Analysis to improve the propagation prediction.es_ES
dc.description.affiliationUniversidad Tecnológica Nacional. Facultad Regional Mendoza; Argentinaes_ES
dc.formatpdfes_ES
dc.identifier.citationInternational Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerlandes_ES
dc.identifier.doi10.1016/j.procs.2017.05.252.
dc.identifier.urihttp://hdl.handle.net/20.500.12272/7952
dc.language.isoenges_ES
dc.relation.projectidPID 3939es_ES
dc.rightsopenAccesses_ES
dc.rights.holderUniversidad Tecnológica Nacional. Facultad Regional Mendozaes_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.rights.uriCC0 1.0 Universal*
dc.rights.useAtribuciónes_ES
dc.sourceProcedia Computer Science (nª 108): 2018-2027 (2017)es_ES
dc.subjectForest Fire Prediction, Statistical analysis, Evolutionary Algorithms, Islands model, High Performance Computinges_ES
dc.titleA comparative study of evolutionary statistical methods for uncertainty reduction in forest fire propagation predictiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.type.versionacceptedVersiones_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
01_88_ICCS2017.pdf
Size:
859.97 KB
Format:
Adobe Portable Document Format
Description:
International Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: