Turbidity estimation by machine learning modelling and remote sensing techniques applied to a water treatment plant

dc.creatorGauto, Víctor Hugo
dc.creatorUtgés, Enid Marta
dc.creatorHervot, Elsa Ivonne
dc.creatorTenev, María Daniela
dc.creatorFarías, Alejandro Rubén
dc.creator.orcid0000-0001-9960-8558
dc.creator.orcid0009-0003-5263-5198
dc.creator.orcid0000-0003-0860-9139
dc.creator.orcid0009-0008-3378-942X
dc.date.accessioned2025-07-01T20:22:08Z
dc.date.issued2025-06-01
dc.description.abstractClean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity.
dc.description.affiliationGauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina.
dc.description.affiliationUtgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina.
dc.description.affiliationHervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina.
dc.description.affiliationTenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina.
dc.description.affiliationFarías, Alejandro Rubén. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina.
dc.formatpdf
dc.identifier.citationGauto, V., Utges, E., Hervot, E., Tenev, M. D., Farías, A., Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant, J.sustain. dev. energy water environ. syst., 13(2), 1130539, 2025
dc.identifier.urihttps://hdl.handle.net/20.500.12272/13416
dc.language.isoen
dc.publisherInternational Centre for Sustainable Development of Energy, Water and Environment Systems SDEWES
dc.relation.projectidCaracterización fisicoquímica de cuerpos de aguas continentales para la evaluación de la utilización de algoritmos en el monitoreo satelital de la calidad del agua
dc.relation.projectidMSPPBRE0008091
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.useAcceso abierto
dc.subjectrandom forest
dc.subjectremote sensing
dc.subjectSentinel-2
dc.subjectturbidity
dc.subjectwater quality
dc.titleTurbidity estimation by machine learning modelling and remote sensing techniques applied to a water treatment plant
dc.typeinfo:eu-repo/semantics/article
dc.type.versionpublisherVersion

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Gauto V. H. et al., 2025 (JSDEWES).pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.63 KB
Format:
Item-specific license agreed upon to submission
Description: