Turbidity estimation by machine learning modelling and remote sensing techniques applied to a water treatment plant
dc.creator | Gauto, Víctor Hugo | |
dc.creator | Utgés, Enid Marta | |
dc.creator | Hervot, Elsa Ivonne | |
dc.creator | Tenev, María Daniela | |
dc.creator | Farías, Alejandro Rubén | |
dc.creator.orcid | 0000-0001-9960-8558 | |
dc.creator.orcid | 0009-0003-5263-5198 | |
dc.creator.orcid | 0000-0003-0860-9139 | |
dc.creator.orcid | 0009-0008-3378-942X | |
dc.date.accessioned | 2025-07-01T20:22:08Z | |
dc.date.issued | 2025-06-01 | |
dc.description.abstract | Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity. | |
dc.description.affiliation | Gauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | |
dc.description.affiliation | Utgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | |
dc.description.affiliation | Hervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | |
dc.description.affiliation | Tenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | |
dc.description.affiliation | Farías, Alejandro Rubén. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | |
dc.format | ||
dc.identifier.citation | Gauto, V., Utges, E., Hervot, E., Tenev, M. D., Farías, A., Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant, J.sustain. dev. energy water environ. syst., 13(2), 1130539, 2025 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12272/13416 | |
dc.language.iso | en | |
dc.publisher | International Centre for Sustainable Development of Energy, Water and Environment Systems SDEWES | |
dc.relation.projectid | Caracterización fisicoquímica de cuerpos de aguas continentales para la evaluación de la utilización de algoritmos en el monitoreo satelital de la calidad del agua | |
dc.relation.projectid | MSPPBRE0008091 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights.use | Acceso abierto | |
dc.subject | random forest | |
dc.subject | remote sensing | |
dc.subject | Sentinel-2 | |
dc.subject | turbidity | |
dc.subject | water quality | |
dc.title | Turbidity estimation by machine learning modelling and remote sensing techniques applied to a water treatment plant | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | publisherVersion |