Browsing by Author "Cussa , jorgelina"
Now showing 1 - 20 of 29
- Results Per Page
- Sort Options
Item Aplicación de materiales nanoestructurados del tipo MCF Y R-MCF para la liberación modificada de ibuprofeno .(Univesidsad Tecnológica Nacional, 2014) Cussa , jorgelina; Juárez , Juliana María; Juárez , Juliana MaríaLos nuevos materiales mesoporosos, Espuma Celular Mosoporosa (MCF) y su Replica Carbonosa (R MCF) son materiales tridimensionales (3D), con poros ultra-grandes (hasta 500 Å), formados por células esféricas uniformes interconectadas. Debido a su sistema de nanoporos 3D con tamaños de poro sustancialmente más grandes que los de las MCM´s o SBA’s, es un candidato muy prometedor para ser utilizado como hospedaje en aplicaciones bio-nanotecnologicas, ya que proporciona una mejor difusión, disminuyendo así los problemas de transferencia de masa. Los sistemas de liberación de fármacos están formados por un principio activo y un sistema transportador, que puede dirigir la liberación del fármaco al sitio adecuado y en la cantidad apropiada. La Nanotecnología aplicada a la liberación de fármacos incrementa la efectividad del medicamento mediante el control preciso de la dosis requerida y del tamaño, la morfología y las propiedades superficiales del compuesto, ya que posibilita la fabricación de dispositivos a escala nanométrica, permitiendo a estos dispositivos atravesar poros y membranas celulares. La liberación del ibuprofeno se realiza introduciendo las muestras en el medio "Simulating Body Fluid" (SBF). El ensayo es dinámico, con agitación a 60 rpm a 37ºC para reproducir las condiciones de liberación en el cuerpo humano. Se tomaron alicuotas a tiempos programados. La concentración de ibuprofeno se determinó por HPLC. La liberación de ibuprofeno en la MCF es muy alta ya que a la hora se ha liberado mas del 80% del fármaco incluido en el material. En el caso de la R-MCF la liberación del ibuprofeno es mas gradual, liberándose a la hora el 50% y el 90% a las 7 horas, lo cual es absolutamente novedoso. La aplicación de estos materiales como hospedajes-transportadores en el estudio la liberación modificada de Ibuprofeno, posibilitaría manejar una dosis alta y masiva o una dosis gradual y constante en el tiempo.Item Controlled Release of Haloperidol from a novel SWCNT Nano composite coated with ZnO nanocrystals.(Univesidsad Tecnológica Nacional., 2023) Anunziata , Oscar Alfredo; Cussa , jorgelina; Martínez , María Laura; Martínez , María Laura; Cussa , jorgelinaStarting from the physicochemical knowledge of the host properties of the na noscale systems would be applied to drug dosage [1,2]. We propose NM synthesis strategies that offer the necessary characteristics for these processes. First, we study the physicochemistry of the anchoring sites of the respective hosts (chemical bonds with reversible or irreversible adsorption) or physisorption (straightforward interactions). Then, whether to design carbon based nanomaterials (CNM), or nano engineered materials, containing the respective active sites (deposited or generated nanospecies), capable of interacting with the aforementioned hosts such as: redox sites, proton acceptor sites, electron donor-acceptor sites, to allow HOMO-LUMO chemical interactions that satisfy the needs of the process to be studied. The nanostructures that allow free diffusions and reversible adsorptions, dosage of molecules with applications in nanokinetics, etc., and determination of critical molecular sizes, calculated using experimental methods, and methods such as density functional theory and semiempirical methods, to avoid steric hindrances between molecules and 100 80 40 60 8 12 16 20 Experimental data Weibull Ritger-Peppas Higuchi Drug Released , % mol/w Time (h) 4 20 nanomaterials whether 2D or 3D, designing NMs with large surface area, physical, ther mal and chemical stability, and pore size, and adequate pore size. Advancing in this sense, this work studies the usage of: Haloperidol Release from ZnO nanocrystal Coated SWCNT, with 30nm of wide and 5 um of long, which by the effect of the interaction between the host and drug molecules and by diffusion through the porosity, leads to a substantial contribution to controlled drug release. The reduction in the dose and frequency of administration, possible improvement in the selectivity of the pharmacological activity, and a prolonged therapeutic effect. CNT prepared by sol gel method (using the same technique describe by us, [3]), but at different pH and long range of pristine mesoporous carbons material calcination, to obtain SWCNTs. The posterior deposition of ZnO, was obtained, employing ZnNO3, activated under N2 flow at 500ºC; offering adequate LUMO of Zn (the hybridized MO) for Haloperidol interactions. Haloperidol competitively blocks postsynaptic dopamine (D2) receptors in the meso limbic system of the brain, thereby eliminat ing dopamine neurotransmission and leading to antidelusionary and antihallucinagenic effects. Specifically, the dose of Haloperidol (potent antipsychotic drug), indicates that its release follows the so called "power law" or Weibull model, based on the results we obtained in our laboratoryItem Experimental Desing Optimization of the ODS of DBT using V2O5 supported on Ga-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx-Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the catalyst/substrate ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box–Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with Ga/Si and V/Si ratios of v1/15 and 1/25, respectively. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support.Item Experimental desing optimization of the ods of DBT using V2O5 supported on GA-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Cussa , jorgelinaExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box– Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.Item Experimental desing optimization of the ODS of DBT using V2O5 supported on GA-SBA-15.(Univesidsad Tecnológica Nacional., 2020) Rivoira , Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Beltramone, Andrea RaquelExperiment design-response surface methodology (RSM) was used in this work to model and optimize one response in the oxidative desulfurization of dibenzothiophene with hydrogen peroxide using VOx Ga-SBA-15 catalysts with different Ga/Si and V/Si ratios. In this study, we analyze the influence of the nature of the catalyst (metal/Si ratio), the substrate/catalyst mass ratio and the oxidant/substrate ratio as factors for the design. The response analyzed was conversion at 15 min of reaction time. The response surfaces were obtained with the Box– Behnken Design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the objective function were obtained employing the catalyst with 4 wt.% of gallium and 6 wt.% of vanadium; the optimal ratio between g DBT/g of catalyst was 4 and the molar ratio H2O2/DBT was 5. The incorporation of gallium as heteroatom in tetrahedral position allows the better anchorage of the active species of vanadium generating a very well dispersed catalyst. Structural and textural characterization of the catalysts were performed by means of XRD, N2 adsorption, UV–Vis–DRS, XPS, NMR, TEM, Raman, TPR and Py-FTIR. UV–Vis–DRS and Raman demonstrated that highly dispersed vanadium pentoxide crystallites are responsible for the high activity in the sulfur removal. The high dispersion depended on the vanadium loading and on the nature of the support. The experiment design was able to find the best combination between the heteroatom and the vanadium active site in order to find the most active catalyst for ODS of DBT at the optimized experimental conditions.Item Experimental desing optimization of the ODS of DBT using vanadium oxide supported on mesoporous GA-SBA-15.(Univesidsad Tecnológica Nacional ., 2018) Rivoira , Lorena Paola; Cussa , jorgelina; Vallés , Verónica Alejandra; Martínez , María Laura; Beltramone , Andrea Raquel; Martínez , María Laura; Vallés , Verónica Alejandra; Cussa , jorgelinaEn el presente trabajo se utiliza el diseño experimental de superficies de respuesta (RSM) para modelar y optimizar la oxidación de dibenzotiofeno (DBT) utilizando VOx-Ga-SBA-15 como catalizador. Analizamos como influye la naturaleza del catalizador (carga de V y Ga), la relación másica substrato/catalizador y la relación molar oxidante/substrato como variables para el diseño. La respuesta analizada fue la conversión a los 15 min de reacción. Las superficies de respuesta fueron obtenidas mediante el Diseño de Box-Behnken, encontrando así la mejor combinación entre los parámetros de reacción que permita optimizar el proceso. Los mayores valores de función objetivo se obtuvieron mediante el uso de la estadística, empleando el catalizador con 4 % p/p de galio y 6 % p/p de vanadio, la relación óptima entre g DBT/g de catalizador fue 4 y la relación molar H2O2/DBT fue 5. La incorporación de galio como heteroátomo en posición tetraédrica permite el mejor anclaje de las especies activas de vanadio generando un catalizador con muy buena dispersión. El diseño de experimento sirvió para encontrar la mejor combinación entre el heteroátomo y las especies activas de vanadio con el fin de hallar el catalizador mas activo para la oxidación de DBT en las condiciones experimentales óptimas.Item Experimental Desing Optimization of the tetralin Hydrogenation over Ir-Pt-SBA-15.(Univesidsad Tecnológica Nacional, 2016) Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma, BrendaExperiment design-response surface methodology (RSM) is used in this work to model and optimize two responses in the hydrogenation of tetralin to decalin using bimetallic Ir–Pt-SBA-15 catalyst. In this study, we analyze the influence of the nature of the catalyst (metal molar fraction and metal loading), the catalyst/substrate ratio and the temperature of the reaction as factors for the design. The responses analyzed were conversion at 3 h and at 5 h of reaction time. The response surfaces were obtained with the Box–Behnken design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the two objective functions were obtained employing the catalyst with 1 wt.% of iridium and 0.7–0.8 wt.% of platinum; the optimal ratio between mass of catalyst and mole of tetralin was 17–19 g/mol and temperature between 200 and 220 ◦C.Item Experimental desing optimization of the tetralin hydrogenation over Ir-Pt-SBA-15.(Univesidsad Tecnológica Nacional., 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , Brenda CeciliaExperiment design-response surface methodology (RSM) is used in this work to model and optimize two responses in the hydrogenation of tetralin to decalin using bimetallic Ir–Pt-SBA-15 catalyst. In this study, we analyze the influence of the nature of the catalyst (metal molar fraction and metal loading), the catalyst/substrate ratio and the temperature of the reaction as factors for the design. The responses analyzed were conversion at 3 h and at 5 h of reaction time. The response surfaces were obtained with the Box– Behnken design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the two objective functions were obtained employing the catalyst with 1 wt.% of iridium and 0.7–0.8 wt.% of platinum; the optimal ratio between mass of catalyst and mole of tetralin was 17–19 g/mol and temperature between 200 and 220 ◦CItem Experimental Desing Optimization of the tetralin Hydrogenation over Pt-Ir/SBA-15.(Univesidsad Tecnológica Nacional, 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , BrendaThe oil refining industry has a difficult challenge to meet the increasingly stringent regula tions on environmental issues. Contaminants such as sulfur, nitrogen, fused ring aromatic compounds or metals are the principal to remove to achieve "green" fuels. The hydrotreating (HDT) is one of the processes most used in the refinery to remove these contaminants. To optimize the gas oil hydrotreater, it is crucial to understand the aromatic hydrogenation reac tion chemistry occurring in the gas oil hydrotreater. To find alternative processes, it is neces sary to develop new and more active catalysts to replace the current ones. Bimetallic Pt–Pd catalysts have received considerable attention, because they show high actvity in a variety of catalytic applications [1,2]. From a fundamental point of view, exploring bimetallic catalysts also allows better understanding of mechanisms and variables involved in the catalytic reac tions. The features of the catalysts here studied are going to be correlated with their catalytic performance in the hydrogenation of tetralin. The final goal is to find the optimal proportion of each metal in order to be more active and the best reaction conditions. The statistical expe riments design is the process of planning an experiment to obtain appropriate data that can be analyzed by statistical methods, to produce concrete and valid conclusions [3]. One of the main advantages in the response curve is to visualize the response for all levels of the experi mental factors Experiment design response surface methodology (RSM) is used in this work to model and to optimize the processItem Experimental Desing Optimization of the tetralin Hydrogenation over Pt-Ir/SBA-15.(Univesidsad Tecnológica Nacional., 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , Brenda Ceciliahe oil refining industry has a difficult challenge to meet the increasingly stringent regula tions on environmental issues. Contaminants such as sulfur, nitrogen, fused ring aromatic compounds or metals are the principal to remove to achieve "green" fuels. The hydrotreating (HDT) is one of the processes most used in the refinery to remove these contaminants. To optimize the gas oil hydrotreater, it is crucial to understand the aromatic hydrogenation reac tion chemistry occurring in the gas oil hydrotreater. To find alternative processes, it is neces sary to develop new and more active catalysts to replace the current ones. Bimetallic Pt–Pd catalysts have received considerable attention, because they show high actvity in a variety of catalytic applications [1,2]. From a fundamental point of view, exploring bimetallic catalysts also allows better understanding of mechanisms and variables involved in the catalytic reac tions. The features of the catalysts here studied are going to be correlated with their catalytic performance in the hydrogenation of tetralin. The final goal is to find the optimal proportion of each metal in order to be more active and the best reaction conditions. The statistical expe riments design is the process of planning an experiment to obtain appropriate data that can be analyzed by statistical methods, to produce concrete and valid conclusions [3]. One of the main advantages in the response curve is to visualize the response for all levels of the experi mental factors Experiment design response surface methodology (RSM) is used in this work to model and to optimize the process.Item HaP/SBA-3 Nanostructured Composite to Remove Fluoride Effectively from Contaminated Water.(Univesidsad Tecnológica Nacional., 2021) Cussa , jorgelina; López, Claudia; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; López, ClaudiaElectron Microscopy (SEM), Transmission Electron Microscopy (TEM) and textural properties, were successfully applied to remove fluoride from contaminated water. The proposed procedure to prepare HaP/SBA-3 was successful, which acts as supports to anchor the HaP crystals, in nanometer-scale (<2nm), with higher fluoride retention from contaminated water. The free OH- groups of HaP nanocrystals, within the host, facilitated the high-performance fluoride trapping. The fluoride retention activity was much higher than that of pure HaP and the composites HaP/SBA-15 and HaP/MCM-41. Keywords: F- retention; Contaminated water; HaP/SBA-3; NanocompositesItem Hidrogenación de tetralin sobre Ir-Pt-SBA-15. Parte 1: Síntesis, caracterizacíon y actividad catalítica.(Univesidsad Tecnológica Nacional, 2015) Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena PaolaSe estudia aquí la hidrogenación de tetralin a decalin utilizando un catalizador bimetálico Ir-Pt SBA-15. En esta Parte se describe la síntesis de los catalizadores, la preparación de la matriz de SBA 15 y el método de co-impregnacion mediante el cual se incorporaron los metales en diferentes proporciones y carga total metalica. Los catalizadores fueron caracterizados por XRD, TEM, análisis fisicoquimicos, XPS, SEM y EDX. En la Parte 2 de este trabajo se analizará la influencia de la naturaleza del catalizador, la relación catalizador sustrato y la temperatura de reacción como factores de un Diseño de Experimentos para optimizar el proceso.Item Hidrogenación de tetralin sobre Ir-Pt-SBA-15. Parte 2: Optimización por Diseño de Experimentos.(Univesidsad Tecnológica Nacional, 2015) Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma, BrendaLa Metodología Diseño de Experimentos - Superficie de Respuesta – se utiliza en este trabajo para modelar y optimizar 2 respuestas en la reacción de hidrogenación de tetralin a decalin usando un catalizador bimetálico Ir-Pt-SBA-15. En este estudio se analizó la influencia de la naturaleza del catalizador, la relación catalizador/sustrato y la temperatura de reacción como factores del diseño. Las respuestas analizadas fueron conversión a 3 y 5 horas Las Superficies de Respuesta fueron obtenidas mediante un diseño Box-Behnken a fin de encontrar la mejor combinación de los distintos parámetros para optimizar el proceso. La metodología estadística aplicada indica que las conversiones más altas de ambas respuestas, a 3 y 5 horas, se obtienen trabajando en el siguiente rango: Catalizador: 1% Ir y 0.7-0.9 %(p/p) Pt; Relación: 17-19 g cat/ mol TL y Temperatura: 200-220°C.Item Hidrogenación de tetralin utilizando un catalizador bifuncional de iridio/platino-SBA-15.(Univesidsad Tecnológica Nacional, 2014) Vallés , Verónica Alejandra; Ledesma, Brenda Cecilia; Rivoira, Lorena Paola; Cussa , jorgelina; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María; Cussa , jorgelina; Ledesma, BrendaLos catalizadores bimetálicos de Pt–Pd han recibido considerable atención debido a que demuestran tener una alta actividad en una amplia variedad de aplicaciones catalíticas (1). Con alta actividad, selectividad y estabilidad, comparada con catalizadores monometálicos de Pt y Pd. Por ejemplo, catalizadores bimetálicos Pt-Pd muestran tener mayor resistencia frente a envenenamientos en comparación con catalizadores de Pt (2-4). Las características estudiadas del catalizador serán correlacionadas con su performance catalítica en la hidrogenación del tetralin. El objetivo final es encontrar la proporción óptima de cada uno de los metales de forma de lograr la mayor actividad en dicho proceso.Item Hydrogenation of tetralin in presence of nitrogen using a noble-bimetallic couple over a Ti-modified SBA-15.(Univesidsad Tecnológica Nacional., 2017) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , Brenda CeciliaThe increased attention paid to catalytic hydrogenation in the oil refining industry is due in part to legislation regarding the maximum contents of sulfur, aromatic compounds, and alkenes in traffic fuels. Aromatics in diesel increase the particle emissions in exhaust gases and they have the further effect of lowering the fuel quality. Many factors such as the catalysts, process parameters, feedstock source and quality, reactivities of sulfur compounds, inhibition effects of H2S, nitrogen compounds and aromatics present in the feed, etc. can have significant influences on the degree of hydrogenation of diesel feeds1,2. Recently, studies have been reviewed and the investigations have also been extended to noble metals3 . In our previous investigations with bimetallic catalysts4 , we had very good results preparing the catalysts by co impregnation of the relevant metals on the SBA-15 mesoporous matrix. These studies showed high activity, selectivity and stability as well also greater resistance to poisons compared to monometallic catalysts. In this contribution titanium is incorporated in tetrahedral position replacing silicon in the mesoporous framework. We expect that Ti incorporation improve the dispersion of the bimetallic clusters. In the present work three compounds tetralin, indole and quinoline were used as models for the compounds in diesel. The model compounds were hydrogenated both separately and as mixtures in order to study the inhibition effect.Item Ir-Pt/SBA-15 applied in the optimization of tetralin hydrogenation.(Univesidsad Tecnológica Nacional, 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira, Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Cussa , jorgelina; Ledesma , BrendaBimetallic catalysts have received considerable attention for hydrotreating (HDT) because they show high activity. The features of the catalysts here studied are going to be correlated with their catalytic performance in the hydrogenation of tetralin at mild conditions. The final goal is to find the optimal proportion of each metal in order to be more active and the best reaction conditions (temperature and amount of catalyst). The statistical experiments design is the process of planning an experiment to obtain appropriate data that can be analyzed by statistical methods, to produce concrete and valid conclusions. One of the main advantages in the response curve is to visualize the response for all levels of the experimental factors Experiment design response surface methodology (RSM) is used in this work to model and to optimize the process. Platinum and Iridium nanoparticles were incorporated into SBA-15 support by the wet co-impregnation method. Ir content was set as 1wt. % and Pt was varied from 0 to 1wt. %. The catalysts were characterized by XRD, BET, XPS, TEM, ICP and TPR. XRD profiles are characteristic of the two-dimensional p6mm hexagonal mesostructure with d100 spacing of 10.16 nm; where the d100 spacing upon Ir and Pt incorporation were quite similar to pristine SBA-15. The TEM images and XPS demonstrate that the metal particles were mainly present inside the porous and XPS and TPR corroborated the reduced state of the metals. The catalytic activity was measured in a 4563Parr reactor at 15 atm of hydrogen and 360 rpm. Feed consisted in 50 mL of tetralin in Dodecane, the amount of tetralin is set according to the ratio of catalyst mass/mass reagent corresponding to each reaction. The application of this methodology allows a better understanding of the influence of the different factors: content of metal on catalyst (A), relationship: mass of catalyst/reagent mass (B) and reaction temperature (C), on two responses: conversion at 3 h and at 5 h of reaction time. These factors were carefully selected taking account the influence of the parameters in the reaction. The design was analyzed by Statgraphics and Statistica Soft. We found that, the variable Catalyst has the best influence over the Conversion at the 95.0% confidence level, according to the Pareto.Item Ir-Pt/SBA-15 applied in the optimization of tetralin hydrogenation.(Univesidsad Tecnológica Nacional., 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , Brenda CeciliaBimetallic catalysts have received considerable attention for hydrotreating (HDT) because they show high activity. The features of the catalysts here studied are going to be correlated with their catalytic performance in the hydrogenation of tetralin at mild conditions. The final goal is to find the optimal proportion of each metal in order to be more active and the best reaction conditions (temperature and amount of catalyst). The statistical experiments design is the process of planning an experiment to obtain appropriate data that can be analyzed by statistical methods, to produce concrete and valid conclusions. One of the main advantages in the response curve is to visualize the response for all levels of the experimental factors Experiment design response surface methodology (RSM) is used in this work to model and to optimize the process. Platinum and Iridium nanoparticles were incorporated into SBA-15 support by the wet co-impregnation method. Ir content was set as 1wt. % and Pt was varied from 0 to 1wt. %. The catalysts were characterized by XRD, BET, XPS, TEM, ICP and TPR. XRD profiles are characteristic of the two-dimensional p6mm hexagonal mesostructure with d100 spacing of 10.16 nm; where the d100 spacing upon Ir and Pt incorporation were quite similar to pristine SBA-15. The TEM images and XPS demonstrate that the metal particles were mainly present inside the porous and XPS and TPR corroborated the reduced state of the metals. The catalytic activity was measured in a 4563Parr reactor at 15 atm of hydrogen and 360 rpm. Feed consisted in 50 mL of tetralin in Dodecane, the amount of tetralin is set according to the ratio of catalyst mass/mass reagent corresponding to each reaction. The application of this methodology allows a better understanding of the influence of the different factors: content of metal on catalyst (A), relationship: mass of catalyst/reagent mass (B) and reaction temperature (C), on two responses: conversion at 3 h and at 5 h of reaction time. These factors were carefully selected taking account the influence of the parameters in the reaction. The design was analyzed by Statgraphics and Statistica Soft. We found that, the variable Catalyst has the best influence over the Conversion at the 95.0% confidence level, according to the Pareto.Item Ketorolac-tromethamine contained in SBA-15 host as a drug release system,(Univesidsad Tecnológica Nacional, 2017) Cussa , jorgelina; Prados, Antonella; Juárez , Juliana María; Gómez Costa , Marcos Bruno; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Juárez , Juliana MaríaDrug delivery is an emerging field mainly focused on targeting drugs. The goal of this targeted delivery is to transport an amount of drugs to desirable sites (such as tumors and diseased tissues) while minimizing unwanted side effects of the drugs on other tissues[1]. Controlled drug delivery systems can achieve precise spatial and temporal delivery of therapeutic agents to the target site[2]. The ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption and release. The SBA-15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as a template and TEOS as a silica source[3]. Ketorolac tromethamine was adsorbed into SBA-15 silica nanochannels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/SBA-15 were characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1N) at initial time (0 - 2 h) and buffer pH 7 at high times at 37 ºC under continuous stirring. Oral commercial Keto tablets (Dolten®) and Keto solution (Keto power) were study for the contrast. Release studies were performed in order to evaluate the required therapeutic efficacy. In this work, we have shown a promising drug storage material for the effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. SBA-15/KETO shows characteristic bands of both, drug materials and the inorganic framework. This indicates that KETO was adsorbed into SBA-15 channel surface without affecting the chemical structure or composition of KETO. The study also demonstrates the storage capacity and release properties of SBA-15 containing KETO. The release of KETO contained in SBA-15 can offer significant improve in controlled drug release and enhance a good analgesia effect.Item Mesoporous Cellular Foam (MCF): an efcient and biocompatible nanomaterial for the controlled release of Chlorambucil.(Univesidsad Tecnológica Nacional, 2022) Juárez , Juliana María; Cussa , jorgelina; Gómez Costa, Marcos BrunoNanotransporters have entered a great deal of exploration attention because of their promising openings in medicine delivery. We propose in this work, the Mesostructured siliceous cellular (MCFs) nanomaterial as a promising new hostfor drug delivery systems because both their specific physicochemical properties, in addition to the high biocompatibility, biodegradability, and low toxicity, make them seductive for controlled medicine release operations. Chlorambucil, is used as a chemotherapy drug administered for treating some types of cancer, chronic lymphocytic leukemia, low-grade non Hodgkin’s lymphoma, Hodgkin’s lymphoma and ovarian cancer. Chlorambucil-loaded Mesostructured cellular foam (MCF-CLB) was prepared and characterized by XRD, TEM, UV Vis DRS, FTIR, and texture analysis determining the adsorption capacity and its release, achieving the required therapeutic efficacy. The release of the drug was conducted by simulating the physiological conditions to reproduce the conditions of the organism. The mechanism of drug release from the MCF-CLB host was evaluated. Different mathematical models were used to adjust the experimental data, the best model describing the phenomenon under study over the entire period is the Weibull model. The auspicious results we attained for the release of the drug using the new material. The main advantage of this release is that the rate of release is fast at the beginning and then gradually decreases until 24 h practically all the drug contained in the carrier is released (>95%).Item Nanostructured SBA-15 host: synthesis, characterization and application in ketorolac-tromethamine release system.(Univesidsad Tecnológica Nacional, 2016) Cussa , jorgelina; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Juárez , Juliana MaríaThe ordered mesoporous silica SBA-15 has been applied in studies of ketorolac tromethamine adsorption and release. The SBA-15 materials with hexagonal and regular structure were obtained using a triblock copolymer Pluronic P123 as template and TEOS as a silica source[1]. Drug delivery is an emerging field mainly focused on aiming drugs. The goal of this targeted delivery is to transport an amount of drugs to desirable sites (such as tumors and diseased tissues) while minimizing unwanted side effects of the drugs on other tissues [2]. Controlled drug delivery systems can achieve precise spatial and temporal delivery of therapeutic agents to the target site. Ketorolac tromethamine was adsorbed into SBA-15 silica nanochannels using ethanol as solvent. The physicochemical and textural properties of SBA-15 and ketorolac tromethamine/SBA-15 were characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and BET surface studies. Drug release was evaluated by soaking the loaded silica mesoporous material into a solution of HCl (0.1N) at 37 ºC under continuous stirring. Release studies were performed in order to evaluate the required therapeutic efficacy. SBA-15 provides significant improvement in the controlled release of ketorolac tromethamine [3]. In this work, we have shown a promising drug storage material for the effective encapsulation and controlled release of KETO, achieving the required therapeutic efficacy. SBA-15/KETO shows characteristic bands of both, drug materials and the inorganic framework. This indicates that KETO was adsorbed into SBA-15 channel surface without affecting the chemical structure or composition of KETO. The study also demonstrates the storage capacity and release properties of SBA-15 containing KETO. The release of KETO contained in SBA-15 can offer significant improve in controlled drug release and enhance a good analgesia effect.