Facultad Regional San Francisco
Permanent URI for this communityhttp://48.217.138.120/handle/20.500.12272/109
Browse
2 results
Search Results
Item Exponential family Fisher vector for image classification(2015-07-01) Sánchez, Jorge; Redolfi, JavierOne of the fundamental problems in image classification is to devise models that allow us to relate the images to higher-level semantic concepts in an efficient and reliable way. A widely used approach consists on extracting local descriptors from the images and to summarize them into an image-level representation. Within this framework, the Fisher vector (FV) is one of the most robust signatures to date. In the FV, local descriptors are modeled as samples drawn from a mixture of Gaussian pdfs. An image is represented by a gradient vector characterizing the distributions of samples w.r.t. the model. Equipped with robust features like SIFT, the FV has shown state-of-the-art performance on different recognition problems. However, it is not clear how it should be applied when the feature space is clearly non-Euclidean, leading to heuristics that ignore the underlying structure of the space. In this paper we generalize the Gaussian FV to a broader family of distributions known as the exponential family. The model, termed exponential family Fisher vectors (eFV), provides a unified framework from which rich and powerful representations can be derived. Experimental results show the generality and flexibility of our approach.Item Fisher Vectors for PolSAR Image Classification(SADIO, 2018-09) Redolfi, Javier; Sánchez, Jorge; Flesia, Ana GeorginaIn this letter, we study the application of the Fisher vector (FV) to the problem of pixelwise supervised classification of polarimetric synthetic aperture radar images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real parts of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive an FV from a mixture of real Wishart densities and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging data sets show the effectiveness of the approach.